
 

ADMINISTRATIVE OFFICE OF 
THE COURTS  

JIS Architecture Assessment 

 
 

Submittal Date 
September 1, 2004  

 
Prepared For 

Dan Sawka 
AOC JIS Development Manager 

 
Prepared By 
Will Iverson 

Practice Manager 
425.451.2727 x2562 

425.558.7828 - fax 
WIverson@SolutionsIQ.com 

 
Julia Francis 

Enterprise Solutions Manager 
State & Local Government 

425.519.6718 - direct 
360.539.1772 - Olympia 

JFrancis@SolutionsIQ.com 
 

www.SolutionsIQ.com 



 
 
 

JISArchitectureAssessment.doc Page 2 of 145                                                   9/3/2004 
Confidential 

 

 
 
 

TABLE OF CONTENTS 
 

ENGAGEMENT OVERVIEW...............................................................................................3 

ACORDS ANALYSIS .............................................................................................................5 

CAPS ANALYSIS....................................................................................................................7 

JIS ARCHITECTURE ANALYSIS.......................................................................................8 

ARCHITECTURE ASSESSMENT OVERVIEW................................................................9 

APPENDIX A:  ACCORDS ARCHITECTURE EVALUATION ....................................15 

APPENDIX B:  CAPS ARCHITECTURE EVALUATION..............................................57 

APPENDIX C:  JIS ARCHITECTURE EVALUATION ..................................................74 

APPENDIX D:  ARCHITECTURAL COMPONENT COMPARISON........................110 

APPENDIX E: NEW FUNCTIONALITY EFFORT ASSESSMENT............................113 

APPENDIX F: JIS NG ARCHITECTURE.......................................................................133 

APPENDIX G: EVALUATED SHORT TERM ALTERNATIVES...............................140 

APPENDIX H: REQUIRED DEVELOPMENT SUPPORT TEAMS............................142 

APPENDIX I: SOLUTIONSIQ ENGAGEMENT CONTACTS ....................................144 

APPENDIX J: DOCUMENT HISTORY ..........................................................................145 

 
 



 
 
 

JISArchitectureAssessment.doc Page 3 of 145                                                   9/3/2004 
Confidential 

 

ENGAGEMENT OVERVIEW 
 
The Administrative Office of the Courts (AOC) has embarked on an effort to integrate 
and replace several disparate judicial applications.  The unified software application 
resulting from the current migration project will be the new Judicial Information System 
(JIS) for Washington Courts.  The process envisioned is to consolidate most recently built 
JAVA applications (ACORDS-Appellate Court Record & Data System and CAPS-Court 
Automated Proceeding and Scheduling) as the basis for the new JIS.  In the original 
migration plan, AOC planned to have this phase completed by June 30, 2005 before 
incorporating the requirements from other legacy applications into this new JIS 
application.   
 
Over the past three years the approach to implementing the new JIS has been impacted by 
significant change.  As a result of this impact, AOC is now taking into consideration 
revisiting the original migration plan, assessing the current JIS architecture, or potentially 
evaluating other options of approach to meet the targeted delivery dates.  SolutionsIQ has 
been involved on a consulting basis on the AOC JIS Development Project since March, 
2003.  Our organization has provided services that range from architecture and design to 
refactoring and development and is highly knowledgeable of the core applications and 
technology involved in this effort. 
 
For the purpose of this assessment, SolutionsIQ was engaged to: 
 

• Review the current architectural design to determine the long term (20 year) 
viability and supportability and to make recommendations for changes or 
additions 

• Determine the feasibility of using the ACORDS and CAPS applications in the 
described architecture 

• Estimate the effort to migrate the two applications into the new architecture as a 
single application. 

 
The desired outcome of our assessment was to identify and: 
 

• Recommend changes or additions to the current AOC architectural design. 
• List changes necessary to bring the ACORDS and CAPS applications into a 

proposed architecture. 
• Estimate the effort to refactor ACORDS and CAPS into a proposed architecture. 
• Estimate the effort to consolidate ACORDS and CAPS into a singular application. 

 



 
 
 

JISArchitectureAssessment.doc Page 4 of 145                                                   9/3/2004 
Confidential 

 

At a high-level, our consultant team completed an in-depth analysis of the ACORDS, 
CAPS, and JIS Architecture and Applications.  The analysis took into account both the 
client and server side architecture, source lines of code, complexity of features and 
functionality, the ability to add features, and the maintainability and long-term viability 
of the applications and architecture.   
 
In the following sections we detail our analysis of each core application and its impact to 
the JIS Migration Plan.  Following our analysis are our recommendations of architecture 
and project approaches to complete the JIS Migration Plan.  We have included in our 
assessment supporting documents and diagrams outlining our processes, analyses, and 
findings.  We believe there are options and approaches for this project that will support 
the AOC’s vision of producing and maintaining an efficient and effective operation for 
the Washington State judicial system.



 
 
 

JISArchitectureAssessment.doc Page 5 of 145                                                   9/3/2004 
Confidential 

 

ANALYSIS OVERVIEW 
 
Each of the three existing systems (ACORDS, CAPS, and JIS) were analysed for code 
size (both lines of code and number of files) and complexity. A review of the existing 
development process and developer-identified problem areas was performed. The full 
results of this review, includes in-depth technical information, can be found in appendices 
A, B and C. Appendix D compares the various tools and systems, and also compares 
certain technical components. 
 
Next, the assessment team modeled the effort required to add a single create, update, 
retrieve, and delete of a single record for each system from scratch. This includes 
modeling the creation of the Swing user interface, a web-based interface, and a web 
service for each system. In addition, the team modeled the effort required to add a single 
field to a record and propogate this change throughout the system. The results of this 
analysis are contained in Appendix E. 
 
Based on the analysis as recorded in Appendices A-E, the team developed a streamlined 
architecture, based on a view of the JIS development model but geared towards 
dramatically increasing developer productivity by removing unneeded architectural 
components. This next generation JIS architecture (dubbed JIS NG) was also modeled 
using the same tasks as the existing systems, with the results also included in Appendix 
E. The technical details of the JIS NG system can be found in Appendix F. 
 
A desire was expressed to identify certain areas which could benefit from a focused effort 
in the near-term (nine months or less). Some of the potential areas identified are listed in 
Appendix G. 
 
Appendix H details some of the skill sets and team roles needed based on the assessments 
and recommendations. 
 
The remainder of this summary links the findings to an effort driven model for the 
conversion of the applications to the JIS NG architecture. 
 
It is important to note that this analysis was conducted from a strict technical architecture 
perspective. Potential savings (or additional costs) which may arise from functional 
changes (including merging of functionalty) were not considered, nor the costs (or 
savings) associated with release cycles demands or other project planning related 
components. Finally, no effort associated with decision making at an executive level was 
considered. 
 
 



 
 
 

JISArchitectureAssessment.doc Page 6 of 145                                                   9/3/2004 
Confidential 

 

ACORDS ANALYSIS 
 
 
A detailed technical view of the ACORDS system is contained in an attached appendix. 
The following key points are of interest to business owners: 
 

• The current ACORDS system is regarded as quite unmaintainable. As shown in 
Figure 1, despite the fact that the application contains over 1,000 source files, 
only 39 files account for over 50% of the application code. 

• This complexity, arising from both architectural problems as well as inefficient 
programming, makes it extremely difficult to add new functionality or perform 
maintenance. 

• In addition, this complexity makes it very difficult to perform testing of the 
application. 

 

 
Figure 1: ACORDS Source Breakdown 
 
Effort required to implement a new create, update, retrieve, and delete operation (as 
described by Appendix E) using: 
Swing 23 days  
Web 25 days (estimated) 
Web service 26 days (estimated) 
 
Effort required to add a new field to a table, propogated through the system to user (as 
described by Appendix E): 9 days. 

Files < 25 lines (435)

Files < 100 lines (429)

Files < 500 lines (161)

Files < 1000 lines (19)

Files >= 1000 (20)

39 out of over 1000 
files account for 
over 50% of the 
source in the 
project. 

Distribution of Source Lines By File Size 

435 files with less 
than 25 lines 



 
 
 

JISArchitectureAssessment.doc Page 7 of 145                                                   9/3/2004 
Confidential 

 

CAPS ANALYSIS 
 
A detailed technical view of the CAPS system is contained in an attached appendix. The 
following key points are of interest to business owners: 
 

• The current CAPS system is regarded as unmaintainable. As shown in Figure 2, 
despite the fact that the application contains over 500 source files, only 26 files 
account for over 50% of the application code. 

• CAPS is in a better situation than ACORDS largely due to a smaller overall 
application – the profile, in terms of code and time required to implement new 
functionality, is otherwise largely similar to ACORDS. 

• The complexity of CAPS, arising from both architectural problems as well as 
inefficient programming, makes it extremely difficult to add new functionality or 
perform maintenance. 

• In addition, this complexity makes it very difficult to perform testing of the 
application. 

 

 
Figure 2: CAPS Source Breakdown 
 
Effort required to implement a new create, update, retrieve, and delete operation (as 
described by Appendix E) using: 
Swing 20 days (estimated) 
Web 18 days 
Web service 24 days (estimated) 
 
Effort required to add a new field to a table, propogated through the system to user (as 
described by Appendix E): 3.75 days 

Files < 25 lines (253)

Files < 100 lines (172)

Files < 500 lines (75)

Files < 1000 lines (15)

Files >= 1000 (11)

26 out of over 526 
files account for 
over 50% of the 
source in the 
project. 

Distribution of Source Lines By File Size 



 
 
 

JISArchitectureAssessment.doc Page 8 of 145                                                   9/3/2004 
Confidential 

 

JIS ARCHITECTURE ANALYSIS 
 
A detailed technical view of the JIS system is contained in an attached appendix. The 
following key points are of interest to business owners: 
 

• The current JIS system is much more maintainable than CAPS and ACORDS. As 
shown in Figure3, while the total application in terms of files is on par with 
ACORDS, the files are much smaller and more maintainable. 

• While JIS is in a much better state than CAPS and ACORDS, it was determined 
that the application still included additional architectural components and layers 
unneeded for (and interfering with) the delivery of required business 
functionality. 

• These unneeded architectural components, in addition to increasing the time 
needed to implement functionality, also increase the risk of failure, the time 
needed to train staff, testing costs, and more. 

 

 
Figure 3: JIS Source Breakdown 
 
Effort required to implement a new create, update, retrieve, and delete operation (as 
described by Appendix E) using: 
Swing 21.5 days 
Web 19 days (estimated) 
Web service 24.5 days 
 
Effort required to add a new field to a table, propogated through the system to user (as 
described by Appendix E): 6 days 

 

Files < 25 lines (598)

Files < 100 lines (447)

Files < 500 lines (179)

Files < 1000 lines (9)

Files >= 1000 (3)
Apx 50% of the files 
in 100-1000 line 
files. 

Distribution of Source Lines By File Size 

596 files with less 
than 25 lines 



 
 
 

JISArchitectureAssessment.doc Page 9 of 145                                                   9/3/2004 
Confidential 

 

ARCHITECTURE ASSESSMENT OVERVIEW 
 
Given the limitations of the CAPS, ACORDS, and JIS systems, the recommendation is to 
move to a streamlined “next generation” version of the JIS system, hereafter referred to 
as JIS NG. 

The JIS NG development model is intended to be highly productive and familiar to a 
typical Java developer. After an initial (est. 3 calendar months) development phase, all 
new functionality will be implemented on the new architecture. At this time other 
migration efforts will be started to move the business functionality of ACORDS, CAPS, 
and JIS onto the JIS NG architecture.   

Services such as Calendaring and Case Management would be implemented on JIS NG in 
a way that could be used by all court levels. Depending on the functionality, application 
development will merge and share the various business functionality components and/or 
allow each court level to access their own JIS NG system through a common interface.  
Over time these separate backends would be merged. 

Using the same model for calculating effort required to implement a new create, update, 
retrieve, and delete operation as described above and in Appendix E) using the 
appropriate user interface, the effort to implement new features on JIS NG is estimated 
at: 
Swing 11.5 days 
Web 11 days 
Web service 19.5 days 
 
Similarly, the effort required to add a new field to a table, propogated through the system 
to user (as described by Appendix E) is estimated at: 2.5 days. 
 
This represents a significant savings, allowing for more efficient delivery of new 
functionality and reduction in maintenance.  

To provide for an incremental migration, reusable components from existing legacy 
systems will be removed and (where appropriate) generalized for multiple court levels. It 
would reuse as much of the existing code and functionality of CAPS and ACORDS as 
possible. As new components such as Case Management become available, legacy users 
would be shifted to the new system as seamlessly as possible. 

Migration Effort Overview 

The migration would consist of two phases: a planning and upfront design phase of 
approximately three calendar months, and a second phased migration phase. 



 
 
 

JISArchitectureAssessment.doc Page 10 of 145                                                   9/3/2004 
Confidential 

 

The planning phase affords three teams, in parallel, for three months to implement the 
necessary architectural design and improvement work to address needs as described in 
the appendices. 

Phase 1 

Phase 1 consists of three teams, one to address a unified persistence model (i.e. Java 
application integration with the database), a team to attempt to refactor (from a design 
perspective) the unmaintainable files in ACORDS, CAPS and JIS as identified above, 
and finally a third team to fully document and build the JIS NG development platform as 
well as demonstrate the JIS NG platform effectiveness by delivering a component of 
business value. 

Phase 1A: Unified Persistence 

This team will develop a unified persistence model for JIS NG. This single coherent 
persistence view will include O/R and database view recommendations, including the 
generation of an O/R view of a significant portion of the database. A senior DBA will 
work with this team to identify potential areas of concern, assist with performance 
analysis, and profile the existing applications for poorly performing components. The 
expectation is not to make changes which will significantly perturb the existing 
production database, but to ensure that the application development and database 
management designs are performed in conjunction. 

Phase 1A Effort: six person team for 3 months. 2 Architects, 1 Senior DBA, 1 Developer, 
1 QA, 1 PM. 

Phase 1B: Design Refactor 

This team will perform a design refactor of the existing application source files of 1,000 
source lines of code and greater. This includes 39 files in ACORDS, 26 files in CAPS, 
and 3 files in JIS. This is necessary for future maintainability, testing, and any attempt to 
generalize or otherwise reuse components of these applications. Regardless of any new 
target architecture, this effort is required to effectively move these systems forward. 

• This team may contribute the results of this refactoring back to the maintenance 
teams assigned to ACORDS, CAPS, and JIS, but is not expected to build 
production-ready code. It is important to keep in mind that these few files 
represent over 50% of the source for ACORDS and CAPS. 

Phase 1B Effort: Eleven person team for 3 months. 1 Architect, 4.5 Developer, 4.5 QA, 1 
PM, broken out as 2 Dev/1.5 QA for ACORDS, 1.5 Dev/1.5 QA for CAPS, and 1 Dev/1 
QA for JIS. 



 
 
 

JISArchitectureAssessment.doc Page 11 of 145                                                   9/3/2004 
Confidential 

 

Phase 1C: JIS NG 

This phase is intended to build and document JIS NG development environment, 
including pulling together tools, setting up the repository, identifying functional silos, and 
establishing viability by implementing an initial business goal. 

Phase 1C Effort: Fifteen person team for 3 months. 2 Architects, 1 Senior DBA, 10 
Developers, 1 QA, 1 PM 



 
 
 

JISArchitectureAssessment.doc Page 12 of 145                                                   9/3/2004 
Confidential 

 

Phase 2: Migration 

The full architecture for the JIS NG project is described in an appendix. From a business 
user perspective, in addition to improvements intended to help drive rapid application 
development, the JIS NG project moves from a model which describes monolithic 
applications to a service centric model, as shown in Figure 4. Each service can be 
updated and maintained by an independent team, publishing interfaces usable by other 
teams. 

ACORDS

CAPS

JIS
C

ase
M

anagem
ent

C
alendaring

R
esource 

M
anagem

ent

R
eporting

JIS NG

… …

ACORDS

CAPS

JIS
C

ase
M

anagem
ent

C
alendaring

R
esource 

M
anagem

ent

R
eporting

JIS NG

… …

 
Figure 4: From Monolithic To Services 
 
As components are migrated to JIS NG, web services and JINI services can be used to 
access JIS NG functionality removed from ACORD/CAPS/JIS and placed into JIS NG. 
 
Phase 2 Effort Assessment 
 
The following effort assessment is based strictly on an architectural/developer-centric 
view of the application – the potential for significant savings by merging existing 
functionality is not specified, as no end user analysis of benefit has been performed. 
Exposing merged functionality (including incremental additions to the user interface, 
backend functionality merging, etc.) are NOT included in the scope of this effort analysis. 
 
Therefore, this analysis is performed from the perspective of a strict “port” – moving the 
systems from the respective current architectures to the new systems. 
 
First, an attempt was made to convert the various applications to a single consistent 
measure, a JIS source file, as shown in Table 1. 
 
  Relative  Weighted 
Application Files Complexity* Files 
ACORDS 1141 2.05 2333.9 
CAPS 646 1.86 1204.8 
JIS 1237 1.00 1237.0 



 
 
 

JISArchitectureAssessment.doc Page 13 of 145                                                   9/3/2004 
Confidential 

 

*based on lines of code/file as compared to JIS 
 
Table 1: Consistent Source File Measure 
 
As noted above, the effort required to implement a new feature for each architecture is 
provided. After weighting the file count to the JIS environment, an assumption was made 
(based on the JIS development profile) that seven files account for a single “feature.” 
Based on this model, the following number of “features” can be found across the 
following applications: 
 
 Weighted  Est. JIS -> JIS NG 
Application  File Size Features 
ACORDS 2333.9 333.4 
CAPS 1204.8 172.1 
JIS 1237.0 176.7 
 
Table 2: Estimated Features/Application 
 
Given 11.5 days to implement a JIS NG Swing feature and 11 days to implement a Web 
feature, this works out to 373.1 developer months to convert all three systems to JIS NG. 
 
 JIS NG JIS NG Effort  
Application  Features (dev months) 
ACORDS  333.4 184.3 
CAPS  172.1  91.0 
JIS  176.7  97.7 
 
Table 3: Estimated Migration Development Effort 
 
Obviously, project management and quality assurance estimates must be included. Given 
a standard ratio of one (1) developer to three-quarter (0.75) test and one-quarter (0.25) 
project management resources, this results in a total effort of 746.1 months, excluding 
ramp time. 
 
To fully model this, three base scenarios have been developed, the first based on a 
(purely theoretical) nine (9) month delivery, a twenty-one (9+12=21) month delivery, and 
a thirty-three (9+24) month delivery. 
 
Given a 9 month delivery (high risk, theoretical only), the head count required would be 
129.3. Considering that the first three months would be consumed by training, staffing, 
etc, this would result in a total effort of 1164.0 months. This is not viewed as a realistic 
scenario, given the risk and cost associated with this effort. 
 



 
 
 

JISArchitectureAssessment.doc Page 14 of 145                                                   9/3/2004 
Confidential 

 

Given a 9+12 month delivery, a total of 43.1 head count would be required. Again, 
considering the training & staffing for these resources, this evaluates to a total effort of 
905.3 months. 
 
Finally, given a 9+24 month delivery, a total of head count of 25.9 would be required, for 
a total effort of 853.6 months. 
 
Note that these effort assessments for phase 2 are in addition to the effort assessments for 
phase 1. 
 
Maintenance Comparison 
 
As a final analysis, a look at the costs associated with incrementally adding to the 
existing functionality of ACORDS, CAPS, and JIS was performed. As described above, a 
new feature and incremental feature have been modeled for each platform. 
 
First, assume 150 new features (such as the ability to insert, retrieve, update and delete a 
single record) and 300 incremental features (such as adding a field to an existing table) 
for each of the three systems (450 new features and 900 incremental features total). Note 
that a significant portion of these new and incremental features may actually represent 
bug fixes to the existing application. 
 
Given these feature counts, on the existing systems this represents 6,150 days of effort for 
ACORD, 3,825 for CAPS, and 3,675 for JIS. Including test and project management 
resources (per the formula above), this represents an effort of 27,300 days. 
 
The same number of features (full & incremental) on the JIS NG architecture would be 
expected to consist of a total of 14,850 days, including development, test, and project 
management. This does not account for the significant possibility of code reuse in the JIS 
NG service model.  
 
Considering the continued life span and maintenance costs associated with these 
applications, the savings in maintenance efforts combined with the strategic potential for 
further system integration and code use affords the migration to JIS NG the opportunity 
for significant cost savings. 
 
 
 



 
 
 

JISArchitectureAssessment.doc Page 15 of 145                                                   9/3/2004 
Confidential 

 

APPENDIX A: ACCORDS ARCHITECTURE EVALUATION 
 
Application Functionality 
 
Overview of ACORDS functionality is shown in the use case diagram below 
 
 
 

 



 
 
 

JISArchitectureAssessment.doc Page 16 of 145                                                   9/3/2004 
Confidential 

 

 
Fig 1. High Level Architecture 
 
 
 

 
Fig 2. Client and Transport Layer 
 



 
 
 

JISArchitectureAssessment.doc Page 17 of 145                                                   9/3/2004 
Confidential 

 

 
Fig 3. Service and Persistence Layer 



 
 
 

JISArchitectureAssessment.doc Page 18 of 145                                                   9/3/2004 
Confidential 

 

Issues with the current server side architecture 
 
RMI Layer:   
There is an additional RMI layer called the RMIServlet which serves as a transport 
listener in the server VM for the applet calls and delegates the calls to the session façade 
EJB (ServerProxyCMP). Possible reason why this layer is present is that, at the time this 
project started JDK might not have the classes for performing JNDI lookups. This layer 
may produce additional performance overhead due to the serialization/deserialization, 
increased complexity and development time. Taking this layer out will improve 
performance and maintainability.  
 
NoDAO’s:  
Current architecture uses EJB CMPs for inserts and updates, and uses direct JDBC calls 
for retrievals. This tightly couples business logics with the persistent logics. JDBC and 
CMP calls should be moved to a different layer called DAO’s (Data Access Objects). 
This separation will reduce the coupling the enterprise beans have with the persistent 
layer, thereby leveraging the application to have the flexibility to move to a different 
persistent layer like JDO, Hibernate etc. 
For example there is a method call named insertCase() in the CaseManagerBean which 
contains more than thousand lines of code making several calls to the persistent layer 
without any intermediate classes. 
 
EJB Remote Interface: 
The current implementation of ACORDS uses EJB 1.1 version which provides only 
remote interfaces. These remote interfaces produce big performance overhead because of 
the serialization and de-serialization. This can be resolved by migrating the application to 
use EJB 2.0 (which provides local interfaces). There are currently 67 EntityBeans and 19 
SessionBeans.  
 

1) ServerProxyCMPBean: 
This layer provides only the delegation responsibility to redirect the method call 
from the RMIServlet to each ManagerStatelessSessionBean like 
EventManagerBean. This is an unnecessary and expensive layer which causes 
another performance and maintenance overhead. For example, currently to create 
a new service, following steps are required: 
a. Change Remote Interface, Home Interface, and Bean Implementation for the 
StatelessManagerBean. 
b. Change Remote Interface, Home Interface, and Bean Implementation for the 
ServerProxyCMPBean. 
c. Change Remote Interface, RMI Implementation of the RMIServlet. 
d. Change RMIClientProxy to call the new service implemented in RMIServlet. 

 



 
 
 

JISArchitectureAssessment.doc Page 19 of 145                                                   9/3/2004 
Confidential 

 

We can cut the steps b and c by eliminating ServerProxyCMPBean, and RMIServlet, and 
having RMIClientProxy directly performing the lookup for the ManagerStatelessBean 
like EventManagerBean. 



 
 
 

JISArchitectureAssessment.doc Page 20 of 145                                                   9/3/2004 
Confidential 

 

 
EJB Finder Methods: 
The current ACORDS implementation uses vendor proprietary EJB Finder methods 
which make it difficult to be ported to other J2EE servers. 
It is recommended to migrate to EJB 2.0 or higher, and use EJB QL queries in the 
deployment descriptor of the entity bean. This will help the application not to be tied to a 
specific type of data store.  
 
Refactoring ManagerBean Classes: 
Currently Stateless ManagerBean contains all business and data logic in just one method 
call. For example, CaseManagerBean contains insertCase remote method that spans more 
than 1000 line of codes. Some serious re-factoring has to be done here to make the 
application maintainable and reusable. The total line of EventManagerBean is more 
than 6500 and LOC for PersonManagerBean is 9500. Serious re-factoring is 
recommended 
 
Hard-coded business logic. 
Currently there are lots of hard coded values used in repetitive conditional checks 
throughout the application. If this application needs to be enhanced to support other 
courts like superior courts, it will be extremely difficult to implement and maintain. 
Serious re-factoring is recommended. 
 
For example following lines of code are taken from the CaseManagerBean and the 
highlighted lines show the hard coded court initials 
 
if ((cmpCaseData.isTransferedCase() 
|| cmpCaseData.isIsTransferredToSupremeCourt()) 
&& (currentCourt != null && currentCourt.equals("A08")) 
&& ((oldCourt != null && oldCourt.equals("A01")) 
|| (oldCourt != null && oldCourt.equals("A02")) 
|| (oldCourt != null && oldCourt.equals("A03")))) { 
CaseID caseNum = cmpCaseData.getOldCaseID(); 
String caseID = null; 
if (caseNum != null) 
caseID = caseNum.toJustifiedString(); 
String resCode = getResolutionCode(caseID, oldCourt); 
if (resCode != null) { 
resCode = resCode.trim(); 
if (resCode.equals("CERT")) { 
sourceCode = "COAC"; 
} else { 
SourceCode = "COA"; 
} 
} 



 
 
 

JISArchitectureAssessment.doc Page 21 of 145                                                   9/3/2004 
Confidential 

 

 
} 
 
No business domain object. 
Currently ACORDS uses same value objects on the server and client. This makes the 
application very vulnerable when a value object is changed in the server which is not 
needed by the client, or vice versa 
 
Inconsistent data validation in server. 
Even though there is a validation framework, in many cases developers create their own 
way to validate data which makes this application very hard to maintain. 
For example, followings validation check appears repetitively wherever 
isFilingTypeValid() is called. This kind of validation should be centralized and should be 
done in only one place. 
if (eventData != null 
&& eventData.getFilingClass() != null 
&& eventData.getFilingType() != null 
&& eventData.getActionDate() != null) { 
isFilingTypeValid(conn, eventData); 
} 
 
Inefficient Programming 
There are many inefficient programming practices which make this application very 
difficult to maintain. 
 
For example: 
 
if (eventData instanceof BriefData) { 
DataPurifierFactory 
.createPurifier(BriefData.class, DataPurifierFactory.INSERT_OPERATION) 
.isValid(eventData); 
} else 
if (eventData instanceof OpinionData) 
DataPurifierFactory 
.createPurifier(OpinionData.class, DataPurifierFactory.INSERT_OPERATION) 
.isValid(eventData); 
else 
if (eventData instanceof DecisionData) 
DataPurifierFactory 
.createPurifier(DecisionData.class, DataPurifierFactory.INSERT_OPERATION) 
.isValid(eventData); 
else 
   ……………………………… 
Above snippet can be replaced with one line as 



 
 
 

JISArchitectureAssessment.doc Page 22 of 145                                                   9/3/2004 
Confidential 

 

DataPurifierFactory.createPurifier(eventData.getClass(),DataPurifierFactory.INSERT_O
PERATION).isValid(eventData); 
 
Overly normalized database 
Since the current database schema has been too normalized, the application might suffer 
serious performance and maintenance problems. 
 
For example to retrieve dockets for a case application a developer will have to access 11 
tables namely EVN, EVD, CMT, EDC, CSG, OPD, OPI, EVP, PEL, PER, PAA.  
For example EVN and EVD have one to one dependency and can be combined to one 
table. 
 
Letter/Notice Generation 
Currently, application uses XML templates for generating letters/documents. It then uses 
this template and fills in the values to create another XML which is given as input to the 
“XML2RTF” converter that generates a MS-WORD document. This process is pretty 
cumbersome, error prone and requires high maintenance. Some ways have to be though 
for refactoring such as Coocoon, XSLT, or etc. 
 
Display Calendar 
Current implementation of Calendar generation is error prone and requires lot of 
maintenance. Currently, it contains a lot of string manipulation techniques to produce 
well formatted XML output to take care of some special characters not recognized by 
XML2RTFGenerator  
 
private String convertSpecialChars(String xml)  { 
if(xml != null) { 
StringBuffer sb = new StringBuffer(xml); 
for(int i=0; i < sb.length(); i++) { 
char c = sb.charAt(i); 
if(c == '&') 
sb.setCharAt(i, ' '); 
if(c == '{') 
sb.setCharAt(i, '('); 
if(c == '}') 
sb.setCharAt(i, ')'); 
return sb.toString(); 
} 
else 
return xml; 
} 
 



 
 
 

JISArchitectureAssessment.doc Page 23 of 145                                                   9/3/2004 
Confidential 

 

From the above example it can be seen that application is converting characters like ‘&’, 
‘{‘,, ‘}’ etc to spaces instead of making the XML well formatted using some standard 
API implementations 
 
Self referencing joins 
In the application there are numerous SQL queries performing self joins. This is a very 
costly database operation that can consume tremendous database resources and can affect 
the performance considerably. 
 
For example:  
 
public static final String GET_CONS_OR_LINKED_CASEIDS = "SELECT CSA_NU 
consCase FROM CSA,.RLX T1, RLX T2, RLN " 
WHERE T1.RLX_TBL_TK = ? AND T1.RLX_TBL_NM = 'CSA' AND 
T1.RLX_RLN_TK=RLN_TK AND RLN_TYP_CD = ? AND T2.RLX_RLN_TK = 
RLN_TK " 
AND T2.RLX_TBL_TK = CSA_TK and csa_crt_itl_nu=?"; 
This query performs a self join on the RLX table. Alternative way is application can 
execute separate SQL’s rather than performing a single self join. Also, currently it is been 
seen that the relationships are maintained in 2 tables namely RLN and RLX which 
complicates the situation even more. 
 
Unit tests 
Most of the unit tests are present in one class called ServerProxyCMPTest and contains 
only the basic tests for success scenarios. In short this test does not cover all boundary 
conditions and having this test suite run does not mean that the application is bug free. 
 



 
 
 

JISArchitectureAssessment.doc Page 24 of 145                                                   9/3/2004 
Confidential 

 

Current client side architecture 
 

 
 
Fig 4. Client Architecture Class Diagram 
 
 



 
 
 

JISArchitectureAssessment.doc Page 25 of 145                                                   9/3/2004 
Confidential 

 

 
 
Fig 5. Client Architecture Sequence Diagram 
 



 
 
 

JISArchitectureAssessment.doc Page 26 of 145                                                   9/3/2004 
Confidential 

 

Issues with the current client side architecture 
 
ACORDS has multiple client applications 
ACORDS has a Swing client application meant for Court users who has full update 
access and WEB client application meant for public users who has only view access. 
Maintaining two client applications requires more development time is more error prone. 
It is recommended for combining two client applications into a single client application 
with a role based security to provide a distinct access to the system.  
 
No clear separation of View from Controller and Model. 
All of the View classes contain business logics that should belong to a controller class 
instead. For example, ManageParticipantView contains references to view components 
and table models, and also coordinates the activities which a controller class is supposed 
to do. Since there is no clean Model-View-Controller, it is very difficult to maintain these 
huge View classes. For example, the lines of code for  ManageParticipantsView is 1681. 
 
Shown below are some code snippets from ManageParticipantsView that uses business 
logic 
if(statusCode != null && !(statusCode.equals("A") || statusCode.equals("E") || 
statusCode.equals("F") ) ) { 
... 
} 
This is clearly a business logic and should be moved to the service layer 
 
Detail Panel  
Should contain code which is generated by the tool. i.e. it should just have the layout 
related code for the components. This will help maintainability and also will help in 
isolating the area for UI designers to layout the screens. 
 
Following code snippet is copied from ParticipantDetails and shows that it is making 
server calls to populate some user interface components. This is just one instance and 
there are numerous instances where this same case can be seen: 
 
ClientProxy proxy = ClientProxy.getInstance(); 
proxy.setHandler(null); 
roles = proxy.getParticipantRoles(); 
String[] countryList = proxy.getAddressCountries(); 
countries = new String[countryList.length+1]; 
countries[0] = "   "; 
System.arraycopy(countryList, 0, countries, 1, countryList.length); 
String[] stateList = proxy.getAddressStates(); 
states = new String[stateList.length+1]; 
states[0] = "   "; 
System.arraycopy(stateList, 0, states, 1, stateList.length); 



 
 
 

JISArchitectureAssessment.doc Page 27 of 145                                                   9/3/2004 
Confidential 

 

This code snippet should be moved to a controller class. 
 
Client side Data Validation 
The validation framework provided has been ignored and as a result, there is no central 
place governing the data validation and application of business rules. Instead, the 
individual classes hold the validation rules, which is detrimental to the development 
process. 
if(pageStr != null && pageStr.trim().length() > 0) { 
try { 
Integer.parseInt(pageStr); 
} 
catch(Exception e) { 
valid = false; 
errorMsg = "Pages "; 
} 
} 
 
if(volumeStr != null && volumeStr.trim().length() > 0) { 
try { 
Integer.parseInt(volumeStr); 
} 
catch(Exception e) { 
if(!valid) 
errorMsg = errorMsg + "and Volumes "; 
else 
errorMsg = "Volumes "; 
valid = false; 
} 
 } 
 
if(!valid) { 
MessageDialog dialog = new MessageDialog(null,"Validation error" , true); 
dialog.setMessage(errorMsg + "should be numeric"); 
dialog.setVisible(true); 
dialog.dispose(); 
} 
 
No Unit Tests 
There is not a single unit test for the entire client side code including the framework. This 
has resulted in individual patches being added to the code wherever the programmers 
could not get satisfactory behavior from the framework. Currently the client code is 
reaching to a point that further maintenance is impossible unless some serious 
refactorings are done. 



 
 
 

JISArchitectureAssessment.doc Page 28 of 145                                                   9/3/2004 
Confidential 

 

 
Incompatible with JDK1.4. 
Screen behavior is very erratic with JDK1.4. The component layout differs a lot and so 
does the look and feel.  
 
Business Logic in JSP: 
Some JSP files (such as event_detail.jsp) contain significant embedded business logic. 
Serious re-factoring is recommend to separate business logics from JSPs. Preferably a 
JSP framework, like STRUTS or the one used in CAPS, should be used to enable smooth 
modular development. 
Following code snippet is a method used in event_detail.jsp 
 
private boolean isDecision(EventData eventData) { 
boolean isDecision = false; 
String filingClass = eventData.getFilingClass(); 
if(filingClass != null  
 && (filingClass.trim().equals("Opinion")  
 || filingClass.trim().equals("Decision") ) ) 
   isDecision = true; 
else if(eventData.hasSecondaryEvents()) { 
   com.netsis.acords.EventData[] secEvents = 
eventData.getSecondaryEvents(); 
    if(secEvents != null) { 
     for(int i=0; i < secEvents.length; i++) { 
String secFilingClass = secEvents[i].getFilingClass(); 
If(secFilingClass != null  
 && (secFilingClass.trim().equals("Opinion")  
 || secFilingClass.trim().equals("Decision") ) ) 
isDecision = true; 
 else if(secEvents[i].hasSecondaryEvents()) { 
  com.netsis.acords.EventData[] innerSecEvn = 
    secEvents[i].getSecondaryEvents(); 
  if(innerSecEvn != null) { 
 for(int count=0; count < innerSecEvn.length; count++ ) { 
  String innerSecFilingClass = 
    innerSecEvn[count].getFilingClass(); 
    if(innerSecFilingClass != null  
     && (innerSecFilingClass.trim().equals("Opinion") 
     || innerSecFilingClass.trim().equals("Decision") 
     ) ) 
 isDecision = true; 
    } 
}      
      } 



 
 
 

JISArchitectureAssessment.doc Page 29 of 145                                                   9/3/2004 
Confidential 

 

     } 
    } 
   } 
  return isDecision;  
 } 
 



 
 
 

JISArchitectureAssessment.doc Page 30 of 145                                                   9/3/2004 
Confidential 

 

Performance Analysis 
 
Screen name: Manage Events 
Case Number: 509331 
Court Initials: A01 
Court Type: Appellate 
Total time taken : 15.48 seconds 
Total number of SQL queries executed : 149 
Total time taken in the database to execute SQL queries:10.52 seconds 
Time taken by the application: 4.96 seconds 
 

 
 
 



 
 
 

JISArchitectureAssessment.doc Page 31 of 145                                                   9/3/2004 
Confidential 

 

Screen name: Manage Participants 
Case Number: 509560 
Court Initials: A01 
Court Type: Appellate 
Total time taken : 8.68 seconds 
Total number of SQL queries executed : 65 
Total time taken in the database to execute SQL queries: 4.98 seconds 
Time taken by the application: 3.7 seconds 
 

 



 
 
 

JISArchitectureAssessment.doc Page 32 of 145                                                   9/3/2004 
Confidential 

 

Source Lines of Code (excluding comments and white spaces) 
 

Class Name 
Total 
Lines 

PersonManagerBean.java 9051 
EventManagerBean.java 6506 
ServerProxyCMPBean.java 6094 
ServerProxyCMPTest.java 4009 
CaseManagerBean.java 3908 
RMIServlet.java 2902 
RMIClientProxy.java 2710 
MainFrame.java 1789 
SecurityBean.java 1761 
OralArgumentManagerBean.java 1740 
ManageParticipantsView.java 1681 
ScreeningManagerBean.java 1416 
EventDetail.java 1342 
TrialCaseManagerBean.java 1290 
CaseView.java 1286 
CalendarManagerBean.java 1243 
ManageEventsView.java 1162 
SupremeManageOpinionsView.java 1116 
AppellateCaseDetail.java 1073 
ConsolidateCaseManagerBean.java 1061 
EventCodeServlet.java 985 
ManageOpinionsView.java 965 
TrackAdminView.java 905 
HomeHelper.java 831 
TrackManagerBean.java 814 
XmlRtfConverter.java 806 
DocumentGeneratorBean.java 804 
OralArgumentCalenderView.java 772 
SupremeOralArgumentCalenderView.java 761 
SearchManagerBean.java 731 
LinkingCaseManagerBean.java 651 
CourtBean.java 628 
UserAdministrationView.java 605 
RecusalView.java 592 
ConsolidateCases.java 587 
SupremeOpinionDetail.java 579 
ParticipantDetail.java 576 
BCBean.java 570 
SearchView.java 543 



 
 
 

JISArchitectureAssessment.doc Page 33 of 145                                                   9/3/2004 
Confidential 

 

SuperiorParticipantManagerBean.java 494 
AttorneyAdministrationView.java 479 
AcordsServerUtil.java 467 
EventsInfoBean.java 446 
OpinionDetail.java 440 
DynamicMapper.java 435 
CourtOfficialMaintenanceView.java 430 
NameAddressFileInfo.java 429 
CourtOfficialDetail.java 423 
StaticDataHelper.java 423 
FinalizeCalendarView.java 416 
CourtLocationMaintenanceView.java 415 
OralArgumentDetail.java 412 
LinkCases.java 411 
FilingTypeWithShortDescHolder.java 400 
PagePrinter.java 399 
Header.java 398 
CalendarXmlGenerator.java 393 
SuperiorBasicManagerBean.java 387 
HeardCasesView.java 385 
DocumentTemplateLocatorView.java 376 
ReassignCaseView.java 375 
ScreeningInformationView.java 374 
AttorneyDetail.java 365 
TokenGenerator.java 362 
ResourcesAdministrationView.java 359 
DatePopupPanel.java 353 
SecurityAdministrationView.java 351 
IncompleteCaseView.java 338 
ProfileAdministrationView.java 332 
PendingOpinionReportView.java 330 
CaseBean.java 326 
RecusalViewA08.java 325 
CalendarWidget.java 320 
SupremeOralArgumentDetail.java 301 
StaticDataHolder.java 298 
View.java 292 
DocumentWriter.java 292 
TrackDetails.java 275 
PerfectionView.java 274 
CaseNumberFormatter.java 271 
AccessControlList.java 259 
Filer.java 258 



 
 
 

JISArchitectureAssessment.doc Page 34 of 145                                                   9/3/2004 
Confidential 

 

CommonDate.java 255 
OverdueEventsView.java 254 
PendingClosureView.java 253 
MilestoneDetails.java 249 
ViewSupport.java 249 
PRPStatusView.java 247 
ProfilePermissionAdministrationView.java 245 
TableSorter.java 244 
AppellateCaseData.java 243 
CasesToSupremeCourtView.java 240 
ServerProxyCMPTestConstants.java 240 
Resources.java 239 
AbstractTestCase.java 239 
AssignmentJudge.java 236 
EventBean.java 235 
ScreeningTrialCourt.java 234 
ClientProxy.java 232 
ScreenBean.java 231 
CasesWithoutOpinionView.java 230 
PendingWithoutDueView.java 230 
ServerProxyCMP.java 230 
CaseTitle.java 224 
ManageEventsResultData.java 224 
ScreenedCasesView.java 223 
DocumentBean.java 220 
TransferFrom.java 210 
RMIProxy.java 210 
AcordsDataPurifier.java 210 
TrialCourt.java 209 
ReadyCaseView.java 204 
DocumentTemplateLocatorManagerBean.java 202 
CalendarServlet.java 201 
CaseBanner.java 200 
LocationDetail.java 192 
ProceedingBean.java 192 
FilingActionHolder.java 191 
DisciplinaryHearing.java 189 
UserDetail.java 185 
DataHolder.java 184 
SessionServerConstants.java 183 
ValidatorTester.java 178 
PAABean.java 177 
Replace.java 174 



 
 
 

JISArchitectureAssessment.doc Page 35 of 145                                                   9/3/2004 
Confidential 

 

PersonFinder.java 174 
P.java 173 
EvcEvaUpdate.java 171 
DACAttorneyPopup.java 166 
DefaultPropertyHandler.java 166 
TransferCaseView.java 158 
ChangeStatusSetToHeard.java 158 
TrackBean.java 157 
PELBean.java 157 
OpinionListView.java 156 
ServerConstants.java 156 
CaseIDCacheHandler.java 155 
DocumentTemplateLocatorDetail.java 154 
ParticipantData.java 154 
ActionSelect.java 154 
FilingTypeHolder.java 153 
AttorneySearcher.java 152 
BeanSupport.java 151 
Copy.java 148 
RtfDocumentServlet.java 147 
SuperFileReaderImpl.java 147 
AclGenerator.java 146 
AcordsPropertyPurifierFactory.java 146 
ChangeTracksView.java 141 
RPABean.java 140 
SuperiorBasicData.java 136 
ADBean.java 136 
MilestoneBean.java 134 
OFLBean.java 134 
AcordsDatabaseMgmr.java 132 
CodeReaderImpl.java 132 
DataValidator.java 132 
PublicCalendarData.java 131 
DataTypeConvertor.java 131 
SuperiorSentenceData.java 131 
ChangeTracksDetails.java 130 
PASBean.java 129 
SuperiorDocketManagerBean.java 128 
BasicExceptionHandler.java 126 
DTEBean.java 126 
FilingClassHolder.java 125 
SecurityTypeHolder.java 125 
FilingDateBean.java 125 



 
 
 

JISArchitectureAssessment.doc Page 36 of 145                                                   9/3/2004 
Confidential 

 

EvnDateBean.java 124 
ADABean.java 124 
ReviewTypeHolder.java 121 
USRBean.java 121 
JTreeTable.java 119 
ScreeningCaseData.java 118 
GridPanel.java 117 
OacDateFormatter.java 116 
PNDBean.java 114 
PPABean.java 114 
SecurityBottomDetail.java 112 
SuperiorChargeData.java 111 
OCOBean.java 110 
JNDIHelper.java 109 
Delete.java 109 
SecurityManagerTest.java 109 
ScreeningScreener.java 108 
StateCountryConverter.java 108 
PADBean.java 108 
AppellateAssignCaseDialog.java 107 
DataPropertyInspector.java 107 
SessionManagerBean.java 107 
EvcEvaInsert.java 105 
CategoryHolder.java 104 
ErrorMessageDialog.java 104 
SecurityTopDetail.java 103 
CategoryBean.java 103 
PERBean.java 103 
OralArgumentJudgesHolder.java 102 
ProceedingOfficialBean.java 101 
TrialCaseData.java 100 
EvcAll.java 100 
SealedCaseDisplayWindow.java 99 
EventData.java 99 
DataPurifier.java 99 
FileHelper.java 99 
LogEntry.java 98 
EventParticResultData.java 97 
MaskDocument.java 96 
SeverStatusCheckHolder.java 95 
SourceCodeHolder.java 95 
ProfileDetail.java 94 
StatusCheckHolder.java 94 



 
 
 

JISArchitectureAssessment.doc Page 37 of 145                                                   9/3/2004 
Confidential 

 

SessionTrackerData.java 94 
EventCodeSelect.java 94 
PropertyPurifierFactory.java 93 
ProfilePermissionBottomDetail.java 92 
SearchManagerBeanTest.java 92 
TrialCaseBean.java 92 
AOBBean.java 92 
ATZBean.java 92 
LawClerkHolder.java 91 
JMaskField.java 91 
OpiDecisionBean.java 91 
PersonUtil.java 89 
ScreeningBottom.java 88 
CourtNameHolder.java 88 
CacheLoader.java 88 
FederalCourtInfo.java 87 
SimpleFilenameFilter.java 87 
ATPBean.java 87 
RlxBean.java 86 
PEMBean.java 86 
CaseIssues.java 85 
AppellateCourtNameHolder.java 85 
StatusHistoryBean.java 85 
AcceleratedReasonsHolder.java 84 
ParserManager.java 84 
SPLogManager.java 84 
ResourcesDetail.java 83 
EventCodeActionDelete.java 83 
PPHBean.java 83 
OralHearingLocationHolder.java 82 
ValidatorFactory.java 82 
ORGBean.java 82 
CacheSQLHelper.java 81 
ValidationTester.java 81 
UnqualifiedConnectionDelegate.java 81 
PEABean.java 81 
CaseComplexity.java 80 
CalendarPopupButton.java 80 
SecurityContext.java 79 
DbConnManager.java 79 
PSABean.java 79 
EventsSQLHelper.java 78 
AuthenticationMgmrBean.java 78 



 
 
 

JISArchitectureAssessment.doc Page 38 of 145                                                   9/3/2004 
Confidential 

 

ContextualAclEntry.java 77 
ProceedingHistoryBean.java 77 
CaseStatusSequenceHolder.java 76 
DateCalculator.java 76 
DateCalculator.java 76 
GeographicRegionHolder.java 75 
MotionOfficialsHolder.java 75 
SpaBean.java 75 
ArgumentAllotmentTimeHolder.java 74 
CalendarTypeHolder.java 74 
CaseComplexityHolder.java 74 
DisabilityAppealJudgementsHolder.java 74 
DisabilityPetitionJudjementHolder.java 74 
DisabilityTransferToJudjementHolder.java 74 
FinancialJudjementHolder.java 74 
IssueHolder.java 74 
MiscJudjementHolder.java 74 
MotionCalendarTypeHolder.java 74 
OralArgDurationHolder.java 74 
OralArgTimeHolder.java 74 
ScrInfoCalTypeHolder.java 74 
Utility.java 74 
CommentTitleBean.java 74 
BasicScreeningCaseData.java 73 
CaseProperties.java 73 
MotionsHearingLocationHolder.java 73 
MotionStatusHolder.java 73 
ReadOnlyEventsHolder.java 73 
StateValidator.java 73 
AppellateCaseSearchDialog.java 72 
JudgeNameHolder.java 71 
ScreenerNameHolder.java 71 
SupremeCaseData.java 71 
SteppedComboBoxUI.java 71 
ProceedingOfficialHistoryBean.java 71 
LinkingSeverReasonsHolder.java 70 
NonDisciplinelCaseTypeHolder.java 70 
SeverReasonsHolder.java 70 
SubSystemHolder.java 70 
Search.java 70 
ORABean.java 70 
PhaBean.java 70 
MilestoneData.java 68 



 
 
 

JISArchitectureAssessment.doc Page 39 of 145                                                   9/3/2004 
Confidential 

 

SimpleTreeTableModel.java 68 
AppellateCaseAssigneeDialog.java 67 
CaseStatusHolder.java 67 
ConsolidatedReasonsHolder.java 67 
CourtNameInitialsHolder.java 67 
FilingFeeHolder.java 67 
LinkingReasonsHolder.java 67 
MilestoneDateTypeHolder.java 67 
RoleHolder.java 67 
RoleOfficialHolder.java 67 
IconLabel.java 67 
AddressData.java 66 
AppellateCaseTypeHolder.java 66 
AttorneyAdmissionJudgementHolder.java 66 
AttorneyAdmissionsCaseTypeHolder.java 66 
AttorneyCategoriesHolder.java 66 
AttorneyStatusHolder.java 66 
AttorneySubTypeHolder.java 66 
CountryHolder.java 66 
DisciplinaryActionCaseTypeHolder.java 66 
DisciplinaryHearingJudgementHolder.java 66 
JudgementHolder.java 66 
JudicialAppealCaseTypeHolder.java 66 
JudicialAppealJudgementHolder.java 66 
OfficialSubTypesHolder.java 66 
OfficialTypesHolder.java 66 
StateHolder.java 66 
TrialCaseTypeHolder.java 66 
JSPSearchServlet.java 66 
ProfilePermissionTopDetail.java 65 
Builder.java 65 
MilestoneHolder.java 65 
JComponentCellEditor.java 65 
OpinionBean.java 65 
PropertyChangeEventSupport.java 64 
RlnBean.java 64 
HistoryBean.java 64 
OpinionData.java 63 
HolidaysHolder.java 63 
OANBean.java 63 
EvnParticipantBean.java 63 
ScreeningComments.java 62 
OralArgumentScheduleData.java 62 



 
 
 

JISArchitectureAssessment.doc Page 40 of 145                                                   9/3/2004 
Confidential 

 

PersonManager.java 62 
Searcher.java 61 
CaseResolutionHolder.java 61 
MotionDecisionHolder.java 61 
OpinionDecisionHolder.java 61 
OpinionTypeHolder.java 61 
PanelRoleHolder.java 61 
PublishingStatusHolder.java 61 
FileEditor.java 61 
MotionData.java 60 
ConsolidatedCodeHolder.java 60 
ResolutionReasonHolder.java 60 
TreeTableModelAdapter.java 60 
RemoteHttpServlet.java 60 
OOTBean.java 60 
PHNBean.java 60 
CTCBean.java 60 
OpinionNumberGenerator.java 59 
NoticeProceedingData.java 59 
PropertyChangeEventQueueItem.java 59 
DbSQLHelper.java 58 
AclPolicy.java 58 
MaskParser.java 58 
DefaultPropertyPacker.java 58 
ConnectionCode.java 58 
JSPTableModel.java 58 
PermissionCollection.java 57 
ReassignCasesTableRenderer.java 57 
DocumentTemplateLocatorData.java 57 
ParticipantNonProSePurifier.java 57 
MessageDialog.java 57 
TrialCaseInfoBean.java 57 
MotionBean.java 57 
CTIData.java 56 
RecusalControls.java 55 
SearchCaseData.java 55 
DateSelectionDialog.java 55 
CopBean.java 55 
CourtLocationData.java 54 
EVDTableData.java 54 
OverDueEventDescriptionData.java 54 
SearchRACF.java 54 
PropertyPurifier.java 54 



 
 
 

JISArchitectureAssessment.doc Page 41 of 145                                                   9/3/2004 
Confidential 

 

SortableTableModel.java 54 
TrackHistoryBean.java 54 
Login.java 53 
SealedCaseCellRenderer.java 53 
ExceptionHandler.java 53 
TrackData.java 53 
PropertyIteratorImpl.java 53 
EventManager.java 53 
AccessControlEntry.java 52 
CourtOfficialData.java 52 
CalendarSQLHelper.java 52 
PurificationException.java 52 
StringUtil.java 52 
FriendlyTextArea.java 52 
EEIconTable.java 51 
Purge.java 51 
ATYBean.java 51 
ClientUtil.java 50 
NumberFormatter.java 50 
CompositeValidator.java 50 
TrialCaseFillingDateBean.java 50 
SenBean.java 50 
SearchEmployee.java 49 
PropertyChangeEventQueue.java 49 
PCMBean.java 49 
CalendarUtil.java 48 
SearchField.java 48 
Clock.java 47 
ScreeningViewData.java 47 
OpinionNumberData.java 47 
EvnSelect.java 47 
ArrayDataPurifier.java 46 
DateComparisonValidator.java 46 
ConnectionInfo.java 46 
CaseManagerSQLHelper.java 45 
BackgroundLoader.java 45 
SuperiorDocketData.java 45 
EMABean.java 45 
EventProperties.java 44 
PanelMemberData.java 44 
PhoneData.java 44 
NoticeEventData.java 44 
CourtSQLHelper.java 44 



 
 
 

JISArchitectureAssessment.doc Page 42 of 145                                                   9/3/2004 
Confidential 

 

HttpMessage.java 44 
ScjBean.java 44 
EventParticipantData.java 43 
UserData.java 43 
DefaultPropertyUnpacker.java 43 
DTEKey.java 43 
SpaKey.java 43 
CompressCharacters.java 43 
RowProperties.java 43 
ScreeningStatus.java 42 
ADData.java 42 
DataFormatter.java 42 
IndexManager.java 41 
Env.java 41 
MaskTokenizer.java 41 
SuperiorParticipantData.java 41 
CategoryKey.java 41 
OpiParticipantBean.java 41 
RPAKey.java 41 
ChangeTracksDetailsBeanInfo.java 40 
ProfileDetailBeanInfo.java 40 
ProfilePermissionBottomDetailBeanInfo.java 40 
ProfilePermissionTopDetailBeanInfo.java 40 
ResourcesDetailBeanInfo.java 40 
SecurityBottomDetailBeanInfo.java 40 
SecurityTopDetailBeanInfo.java 40 
UserDetailBeanInfo.java 40 
CompositePurifier.java 40 
JTextFieldFilter.java 40 
PSAKey.java 40 
CaseAssigneeData.java 39 
CourtAssignedStaffData.java 39 
IndividualData.java 39 
NoticeCaseData.java 39 
DataPurifierFactory.java 39 
CopyPastePopupMenu.java 39 
EventQueueWatchdog.java 39 
Rename.java 39 
CommentTitleKey.java 39 
SFCBean.java 39 
MyColorRenderer.java 38 
EventsViewData.java 38 
PublicCalendarViewData.java 38 



 
 
 

JISArchitectureAssessment.doc Page 43 of 145                                                   9/3/2004 
Confidential 

 

JspErrorHandler.java 38 
CurrentOS390Time.java 38 
DataTypeConvertor.java 38 
EMLBean.java 38 
Applet.java 37 
MaskMacros.java 37 
Debug.java 37 
AbstractCellEditor.java 37 
SSNValidator.java 37 
EvnParticipantKey.java 37 
OralArgumentPendingData.java 36 
ParticipantProperties.java 36 
FriendlyTextField.java 36 
NameFormatter.java 36 
CodeBean.java 36 
PNDKey.java 36 
CaseViewBeanInfo.java 35 
PendingOpinionReportViewBeanInfo.java 35 
ViewPanel.java 35 
Trace.java 35 
EventOpinionBean.java 35 
ORAKey.java 35 
PEAKey.java 35 
ATZKey.java 35 
AclManager.java 34 
PELData.java 34 
SPExecutorBean.java 34 
ShortEventData.java 34 
Case.java 34 
TrialCaseFillingDateKey.java 34 
SenKey.java 34 
ActionCodeKey.java 34 
PAA.java 34 
BasicAppellateCaseData.java 33 
DocumentTemplateLocatorBeanInfo.java 33 
ScreeningInformationViewBeanInfo.java 33 
XmlTagConstants.java 33 
ValidatorSpecifier.java 33 
SQLStatements.java 33 
OCOKey.java 33 
ProceedingOfficialHistoryKey.java 33 
TrackHistoryKey.java 33 
SocialSecurityNumberFormatter.java 33 



 
 
 

JISArchitectureAssessment.doc Page 44 of 145                                                   9/3/2004 
Confidential 

 

DocumentKey.java 33 
StatusHistoryKey.java 33 
PADKey.java 33 
PASKey.java 33 
PEMKey.java 33 
PPAKey.java 33 
PPHKey.java 33 
AttorneyData.java 32 
FilingTypeData.java 32 
OralArgCalendarViewData.java 32 
SecuritySQLHelper.java 32 
UserProfileData.java 32 
ActionCodeBean.java 32 
CaseID.java 31 
MainFrameBeanInfo.java 31 
OralArgumentCalenderViewBeanInfo.java 31 
SupremeOralArgumentCalenderViewBeanInfo.java 31 
ScreeningInformationProperties.java 31 
TableMap.java 31 
ProceedingOfficialKey.java 31 
ProceedingHistoryKey.java 31 
ScreenKey.java 31 
FilingDateKey.java 31 
MilestoneKey.java 31 
RlnKey.java 31 
RlxKey.java 31 
TrialCaseInfoKey.java 31 
ScjKey.java 31 
EvnDateKey.java 31 
HistoryKey.java 31 
EventKey.java 31 
EventOpinionKey.java 31 
MotionKey.java 31 
OpiParticipantKey.java 31 
ADAKey.java 31 
EMAKey.java 31 
ORGKey.java 31 
PAAKey.java 31 
PCMKey.java 31 
PELKey.java 31 
PERKey.java 31 
PhaKey.java 31 
BasicCalendarDataImpl.java 30 



 
 
 

JISArchitectureAssessment.doc Page 45 of 145                                                   9/3/2004 
Confidential 

 

PublicCalendarParticipantData.java 30 
ParticipantSQLHelper.java 30 
CenteringDialog.java 30 
SuperiorDocketTextData.java 30 
CacheUpdateServlet.java 30 
ConnectionProperties.java 30 
TrialCourtBeanInfo.java 29 
CaseAssigneeRenderer.java 29 
RecusalViewA08BeanInfo.java 29 
RecusalViewBeanInfo.java 29 
AdditionalCaseData.java 29 
PAAData.java 29 
PERData.java 29 
EnvRACF.java 29 
BeanPanel.java 29 
ProceedingKey.java 29 
OANKey.java 29 
OOTKey.java 29 
TrackKey.java 29 
OpiDecisionKey.java 29 
OpinionKey.java 29 
ADKey.java 29 
ATYKey.java 29 
EMLKey.java 29 
OFLKey.java 29 
PAS.java 29 
PHNKey.java 29 
USRKey.java 29 
SecurityManager.java 29 
CaseComments.java 28 
IncompleteCaseViewBeanInfo.java 28 
OralArgCalendarSQLHelper.java 28 
ExceptionCellRenderer.java 28 
DateCompare.java 28 
PEL.java 28 
PrincipalGroup.java 27 
SecurityHandler.java 27 
EventDetailBeanInfo.java 27 
PRPStatusViewBeanInfo.java 27 
ReadyCaseViewBeanInfo.java 27 
UserAdministrationViewBeanInfo.java 27 
ProfileData.java 27 
RecusalData.java 27 



 
 
 

JISArchitectureAssessment.doc Page 46 of 145                                                   9/3/2004 
Confidential 

 

CustomRMISocketFactory.java 27 
DynamicMapperSQLHelper.java 27 
OriginalActionPurifier.java 27 
SuperiorDefendantData.java 27 
Proceeding.java 27 
FinalizeCalenderViewBeanInfo.java 26 
HeardCasesViewBeanInfo.java 26 
OverdueEventsViewBeanInfo.java 26 
PendingClosureViewBeanInfo.java 26 
ScreenedCasesViewBeanInfo.java 26 
Data.java 26 
HolidaysData.java 26 
ReviewTypeData.java 26 
CalendarServerConstants.java 26 
DuplicateHashTable.java 26 
Mkdir.java 26 
Track.java 26 
Event.java 26 
ChangeTracksViewBeanInfo.java 25 
PerfectionViewBeanInfo.java 25 
ProfileAdministrationViewBeanInfo.java 25 
ProfilePermissionAdministrationViewBeanInfo.java 25 
ResourcesAdministrationViewBeanInfo.java 25 
SecurityAdministrationViewBeanInfo.java 25 
SearchSQLHelper.java 25 
FormattedTextArea.java 25 
URLDecoder.java 25 
EventCodeData.java 25 
Court.java 25 
ADA.java 25 
PAD.java 25 
CourtLocationMaintenanceViewBeanInfo.java 24 
ManageOpinionsViewBeanInfo.java 24 
OpinionListViewBeanInfo.java 24 
SupremeManageOpinionsViewBeanInfo.java 24 
DecisionData.java 24 
FilerDetailData.java 24 
OpinionDescriptionData.java 24 
UserPrincipal.java 24 
AcordsUserManager.java 24 
EVNData.java 24 
ParticipantInfo.java 24 
PHAData.java 24 



 
 
 

JISArchitectureAssessment.doc Page 47 of 145                                                   9/3/2004 
Confidential 

 

PNDData.java 24 
JSPMessage.java 24 
CaseManager.java 24 
AcordsPropertyHandler.java 23 
ConsolidateCasesBeanInfo.java 23 
CourtOfficialMaintenanceViewBeanInfo.java 23 
LinkCasesBeanInfo.java 23 
ManageEventsViewBeanInfo.java 23 
TrackAdminViewBeanInfo.java 23 
AcordsException.java 23 
TrialCaseKey.java 23 
AcordsException.java 23 
PER.java 23 
USR.java 23 
AccessControlContext.java 22 
AppellateCaseDetailBeanInfo.java 22 
CaseIssuesBeanInfo.java 22 
CaseTitleBeanInfo.java 22 
FilerBeanInfo.java 22 
RecusalControlsBeanInfo.java 22 
ScreeningBottomBeanInfo.java 22 
ScreeningCommentsBeanInfo.java 22 
ScreeningScreenerBeanInfo.java 22 
ScreeningStatusBeanInfo.java 22 
ScreeningTrialCourtBeanInfo.java 22 
SupremeOpinionDetailBeanInfo.java 22 
TrackDetailsBeanInfo.java 22 
ViewBeanInfo.java 22 
AttorneyAdministrationViewBeanInfo.java 22 
FederalCourtData.java 22 
OfficialData.java 22 
PRPCaseData.java 22 
ResourceData.java 22 
ResourceAccessLevel.java 22 
CharacterValidator.java 22 
Milestone.java 22 
PAAHome.java 22 
PEM.java 22 
CaseComplexityBeanInfo.java 21 
CourtOfficialDetailBeanInfo.java 21 
MilestoneDetailsBeanInfo.java 21 
OpinionDetailBeanInfo.java 21 
SupremeOralArgumentDetailBeanInfo.java 21 



 
 
 

JISArchitectureAssessment.doc Page 48 of 145                                                   9/3/2004 
Confidential 

 

ReassignCaseViewBeanInfo.java 21 
AcordsNameFormatter.java 21 
JComponentRenderer.java 21 
FilingDate.java 21 
SFCKey.java 21 
PPA.java 21 
PPH.java 21 
CTCKey.java 21 
AclPermission.java 20 
AttorneyDetailBeanInfo.java 20 
CaseBannerBeanInfo.java 20 
LocationDetailBeanInfo.java 20 
OralArgumentDetailBeanInfo.java 20 
ParticipantDetailBeanInfo.java 20 
TransferFromBeanInfo.java 20 
ResourceNames.java 20 
OpiDecisionData.java 20 
AcordsServerDataSorter.java 20 
JspSecurityUtil.java 20 
PropertiesReader.java 20 
PropertiesReader.java 20 
StatusHistory.java 20 
ORG.java 20 
PEA.java 20 
SecurityPrincipal.java 19 
BasicOralArgCaseData.java 19 
BriefData.java 19 
CaseViewData.java 19 
FederalCourtInfoBeanInfo.java 19 
HeaderBeanInfo.java 19 
EventsInfoSQLHelper.java 19 
XmlToRtf.java 19 
AssignerFactory.java 19 
TrialCourtInfo.java 19 
PropertiesReader.java 19 
Debug.java 19 
Document.java 19 
RPA.java 19 
AOB.java 19 
AOBKey.java 19 
AssignmentJudgeBeanInfo.java 18 
DisciplinaryHearingBeanInfo.java 18 
FilingClassData.java 18 



 
 
 

JISArchitectureAssessment.doc Page 49 of 145                                                   9/3/2004 
Confidential 

 

SecurityConstants.java 18 
CalendarMonthRenderer.java 18 
QueueMapEntry.java 18 
TrimLeadingZero.java 18 
OralArgumentManager.java 18 
DTE.java 18 
OpiDecision.java 18 
PSA.java 18 
CaseCommentsBeanInfo.java 17 
PermissionData.java 17 
ValidationError.java 17 
CaseKey.java 17 
CodeReaderContentsImpl.java 17 
OacHighLowDates.java 17 
CodeKey.java 17 
EvnDate.java 17 
ATZ.java 17 
MilestoneProperties.java 16 
RecusalProperties.java 16 
ResourcePermission.java 16 
SecurityProperties.java 16 
NoticeParticipantData.java 16 
PublicCalendarCourtData.java 16 
TrackSQLHelper.java 16 
ResourceNameMapper.java 16 
JComponentCellRenderer.java 16 
ParticipantProcessControlData.java 16 
ConsolidateCaseManager.java 16 
OOT.java 16 
Rlx.java 16 
EventHome.java 16 
ATP.java 16 
ViewDescriptor.java 15 
AcordsServerException.java 15 
SQLDateAssigner.java 15 
MaskCondition.java 15 
CompareArray.java 15 
ProceedingHome.java 15 
CaseHome.java 15 
CopKey.java 15 
TrackHome.java 15 
EventsInfo.java 15 
PADHome.java 15 



 
 
 

JISArchitectureAssessment.doc Page 50 of 145                                                   9/3/2004 
Confidential 

 

Pha.java 15 
ATPKey.java 15 
CourtData.java 14 
CourtInfo.java 14 
DefaultSupremeJudgeData.java 14 
JudgeNameData.java 14 
OralArgumentProperties.java 14 
RecusalA08Properties.java 14 
ParticipantInformation.java 14 
TrialCaseSQLHelper.java 14 
TrackProperties.java 14 
MaskToken.java 14 
ViewPropertyIteratorImpl.java 14 
BetweenValidator.java 14 
SharedPackageTest.java 14 
ScreeningManager.java 14 
LinkingCaseManager.java 14 
TrialCaseManager.java 14 
OAN.java 14 
CodeReaderImpl_JDBC.java 14 
RowInfo.java 14 
EvnDateHome.java 14 
PND.java 14 
TestClient.java 13 
BasicCalendarData.java 13 
CaseIDData.java 13 
DocumentTemplateLocatorProperties.java 13 
ReadyCaseData.java 13 
CustomDateAssigner.java 13 
SortCriteria.java 13 
MaskSet.java 13 
PLAF.java 13 
AbstractPacker.java 13 
MultiColumnObject.java 13 
DateValidator.java 13 
CalendarManager.java 13 
Screen.java 13 
Cop.java 13 
RlxHome.java 13 
EditableSortableModel.java 12 
ParticipantManipulation.java 12 
PropertyPacker.java 12 
ScreenedCasesReportData.java 12 



 
 
 

JISArchitectureAssessment.doc Page 51 of 145                                                   9/3/2004 
Confidential 

 

SearchProperties.java 12 
ConstantDataValues.java 12 
TrackManager.java 12 
OFL.java 12 
PELHome.java 12 
ResourceTypes.java 11 
DataPropertyIteratorImpl.java 11 
LimitedStyledDocument.java 11 
UneditableTableModel.java 11 
ProxyPackageTest.java 11 
ProceedingOfficial.java 11 
Opinion.java 11 
DocumentGenerator.java 11 
MaxLengthValidator.java 10 
Sen.java 10 
NoDVIParticipantException.java 10 
EvnParticipant.java 10 
PCM.java 10 
PPAHome.java 10 
PSAHome.java 10 
ATZHome.java 10 
SuperiorParticipantManager.java 10 
SecurityManager.java 9 
CaseStatus.java 9 
OrganizationData.java 9 
GenerateSequence.java 9 
MaskExpression.java 9 
MaskLiteral.java 9 
ActionProxy.java 9 
TreeTableModel.java 9 
MinLengthValidator.java 9 
SQLHelper.java 9 
SQLHelper.java 9 
FilingDateHome.java 9 
Scj.java 9 
InvalidParameterException.java 9 
OpinionHome.java 9 
ADHome.java 9 
PEMHome.java 9 
PERHome.java 9 
PPHHome.java 9 
RPAHome.java 9 
PropertyUnpacker.java 8 



 
 
 

JISArchitectureAssessment.doc Page 52 of 145                                                   9/3/2004 
Confidential 

 

ExceptionTypes.java 8 
FieldValidationException.java 8 
RecordNotExistException.java 8 
TrimAssigner.java 8 
PropertyHandler.java 8 
Time.java 8 
AlphabeticValidator.java 8 
AlphanumericValidator.java 8 
NumericValidator.java 8 
ProceedingOfficialHome.java 8 
ProceedingOfficialHistory.java 8 
CommentTitle.java 8 
CommentTitleHome.java 8 
DTEHome.java 8 
RlnHome.java 8 
TrialCase.java 8 
Spa.java 8 
IncompleteInformationException.java 8 
InvalidCaseTypeException.java 8 
InvalidDateFormatException.java 8 
InvalidLogonException.java 8 
InvalidPersonTypeException.java 8 
ScomisCaseOnlyException.java 8 
SuperFileReader.java 8 
DocumentHome.java 8 
ADAHome.java 8 
EMA.java 8 
PASHome.java 8 
PEAHome.java 8 
AclContext.java 7 
AclSource.java 7 
ExceptionSubTypes.java 7 
NotNullDataPurifier.java 7 
NullDataPurifier.java 7 
BasicBeanInfo.java 7 
PropertyChangeSource.java 7 
PropertyIterator.java 7 
NotNullValidator.java 7 
NullOrEmptyValidator.java 7 
NullValidator.java 7 
StringValidator.java 7 
TrimmedValueNotEmptyValidator.java 7 
Validator.java 7 



 
 
 

JISArchitectureAssessment.doc Page 53 of 145                                                   9/3/2004 
Confidential 

 

Category.java 7 
CategoryHome.java 7 
Rln.java 7 
TrialCaseHome.java 7 
AuthenticationMgmr.java 7 
EventOpinionHome.java 7 
EvnParticipantHome.java 7 
Motion.java 7 
OpiDecisionHome.java 7 
ORA.java 7 
PhaHome.java 7 
PNDHome.java 7 
SuperiorBasicManager.java 7 
AccessLevel.java 6 
AclEntryNotFoundException.java 6 
OpinionNotExistException.java 6 
QueryNotExecutedException.java 6 
UserAuthFailedException.java 6 
Assigner.java 6 
BlankAssigner.java 6 
CurrentDateAssigner.java 6 
EmptyPurifier.java 6 
InputDataException.java 6 
Purifier.java 6 
ValidationException.java 6 
ValidationWarning.java 6 
EnterKeyListener.java 6 
ValidatingBoundPropertyChangeSource.java 6 
ConnectionBusyException.java 6 
ConnectionCreateException.java 6 
DriverNotLoadedException.java 6 
PropertiesNotFoundException.java 6 
PropertyNotFoundException.java 6 
AfterValidator.java 6 
AnyStringValidator.java 6 
BeforeValidator.java 6 
SQLHelper.java 6 
SQLHelper.java 6 
LogManager.java 6 
OCO.java 6 
DocumentTemplateLocatorManager.java 6 
CourtHome.java 6 
MilestoneHome.java 6 



 
 
 

JISArchitectureAssessment.doc Page 54 of 145                                                   9/3/2004 
Confidential 

 

OANHome.java 6 
TrialCaseInfo.java 6 
SpaHome.java 6 
AuthenticationMgmrHome.java 6 
CodeReader.java 6 
PropertiesNotFoundException.java 6 
OpiParticipant.java 6 
OpiParticipantHome.java 6 
StatusHistoryHome.java 6 
AD.java 6 
EMAHome.java 6 
OFLHome.java 6 
ORAHome.java 6 
PCMHome.java 6 
AOBHome.java 6 
ATPHome.java 6 
ConsolidationStatus.java 5 
FinalizeProperties.java 5 
HeardProperties.java 5 
ErrorCodes.java 5 
AbstractUnpacker.java 5 
SQLHelper.java 5 
ProceedingOfficialHistoryHome.java 5 
TrackHistoryHome.java 5 
TrialCaseFillingDate.java 5 
SFC.java 5 
SFCHome.java 5 
HistoryHome.java 5 
MotionHome.java 5 
ATY.java 5 
ATYHome.java 5 
EML.java 5 
EMLHome.java 5 
ORGHome.java 5 
PHNHome.java 5 
CTCHome.java 5 
USRHome.java 5 
SearchManager.java 5 
ContextualPolicy.java 4 
Policy.java 4 
CalendarProcessList.java 4 
SearchViewBeanInfo.java 4 
TransferCaseViewBeanInfo.java 4 



 
 
 

JISArchitectureAssessment.doc Page 55 of 145                                                   9/3/2004 
Confidential 

 

LocationTypes.java 4 
SecurityPolicy.java 4 
TrialCaseDetailData.java 4 
MaskElement.java 4 
MaskException.java 4 
PropertyStrategy.java 4 
ValidationException.java 4 
SQLHelper.java 4 
CacheServlet.java 4 
OCOHome.java 4 
ProceedingHistoryHome.java 4 
ScreenHome.java 4 
CopHome.java 4 
TrackHistory.java 4 
OOTHome.java 4 
TrialCaseInfoHome.java 4 
ScjHome.java 4 
TrialCaseFillingDateHome.java 4 
SenHome.java 4 
ConnectionBuilder.java 4 
DeletionFailureException.java 4 
IncompleteObjectException.java 4 
InsertionFailureException.java 4 
InvalidJISUserException.java 4 
InvalidPasswordException.java 4 
InvalidTokenException.java 4 
NoDataFoundException.java 4 
NoDefaultParticipantException.java 4 
NoSessionFoundException.java 4 
UpdateFailureException.java 4 
ActionCode.java 4 
ActionCodeHome.java 4 
Code.java 4 
CodeHome.java 4 
EventOpinion.java 4 
SessionManager.java 4 
ServerProxyCMPHome.java 4 
SuperiorDocketManager.java 4 
ChangeTrackProperties.java 3 
ExceptionHandler.java 3 
ManageParticipantsViewBeanInfo.java 3 
SPExecutor.java 3 
SPExecutorHome.java 3 



 
 
 

JISArchitectureAssessment.doc Page 56 of 145                                                   9/3/2004 
Confidential 

 

CalendarManagerHome.java 3 
OralArgumentManagerHome.java 3 
ScreeningManagerHome.java 3 
CaseManagerHome.java 3 
ConsolidateCaseManagerHome.java 3 
DocumentTemplateLocatorManagerHome.java 3 
LinkingCaseManagerHome.java 3 
TrackManagerHome.java 3 
TrialCaseManagerHome.java 3 
OACException.java 3 
UnqualifiedConnection.java 3 
EventManagerHome.java 3 
EventsInfoHome.java 3 
History.java 3 
PersonManagerHome.java 3 
PHN.java 3 
CTC.java 3 
DocumentGeneratorHome.java 3 
SearchManagerHome.java 3 
SecurityManagerHome.java 3 
SessionManagerHome.java 3 
SuperiorBasicManagerHome.java 3 
SuperiorDocketManagerHome.java 3 
SuperiorParticipantManagerHome.java 3 
ServerSideClass.java 2 
BoundPropertyChangeSource.java 2 
UpperCaseValidator.java 2 
ProceedingHistory.java 2 
ExceptionNoDefaultParticipant.java 2 
InvalidJabsUserException.java 2 
InvalidJabsUserException.java 2 
InvalidJISUserException.java 2 
InvalidPasswordException.java 2 
InvalidTokenException.java 2 
NoDataFoundException.java 2 
NoSessionFoundException.java 2 
Total (1063 classes) 128747 

 
  
 



 
 
 

JISArchitectureAssessment.doc Page 57 of 145                                                   9/3/2004 
Confidential 

 

 

APPENDIX B: CAPS ARCHITECTURE EVALUATION 
 
Application Functionality 
 
Following shows a high level use case diagram for the CAPS architecture 
 

 
 
Fig. 1 CAPS User Case Diagram 
 
 

 
 



 
 
 

JISArchitectureAssessment.doc Page 58 of 145                                                   9/3/2004 
Confidential 

 

Fig. 2 CAPS High Level Deployment Diagram 
 
 

 
 
Fig. 3 CAPS WEB Server Deployment Diagram 
 
 
 

 
 
Fig. 4 CAPS Service Deployment Diagram 



 
 
 

JISArchitectureAssessment.doc Page 59 of 145                                                   9/3/2004 
Confidential 

 

 
 
Fig. 5 CAPS Sequence Diagram For Add Calendar



 
 

JISArchitectureAssessment.doc             Page 60 of 145                                                   9/3/2004 
Confidential 

Architecture Issues 
 
Server-intensive processing and communication overhead 
Due to limitations of the current architecture, several requests must be sent from the client 
browser to the server when a single web page is rendered.  Simple actions, such as the user 
selecting an item in a drop-down box, cause a round trip communication process with the server.  
The browser must send a request, the server must process it, the browser must receive the 
response, and then the browser must render the page again.  This requires additional server 
processing resources, additional time, and can result in an interface which is slow to respond to 
user input.  
 
EJB 1.1 
The current implementation of CAPS uses the EJB 1.1 version which requires the use of remote 
interfaces for communication with the Enterprise Java Beans.  This can impose additional 
processing overhead for the marshalling and unmarshalling of method parameters and return 
values and provides no value since the EJBs are deployed in the same process as the web 
application.   
More recent versions of the EJB specification provide a local interface mechanism which 
prevents this overhead. 
 
Business logic in stored procedures 
Stored procedures are used to implement business logic for recurring schedule items.  This can 
cause maintenance problems.  Business logic should be centralized in the application architecture 
as much as possible.  They are difficult to debug and are difficult to use in a development 
environment, impacting the productivity of the application developers. 
 
JavaScript  
JavaScript is currently used to do client-side user input validation such as field length checks. 
The JavaScript code exists in JSPs.  These JSPs contain business logic along with presentation 
logic.  This introduces maintenance problems, impacting developer productivity.  This 
architecture also is difficult to test and reduces the effectiveness of the unit testing coverage. 
JavaScript also is difficult to maintain and debug because of variations between browsers. 
Application behavior can vary depending upon browser types, versions, and the users’ browser 
settings.  Additionally, if a user disables JavaScript using their browser because of security 
concerns, this application can not be run. 
 
Complexity of certain EJBs 
Some of ManagerBean is overly complex.  For example, the ProceedingManagerBean has 5300 
lines of code.  This negatively affects developer productivity. 
 
Entity Bean overhead 
Currently CAPS uses coarse-grained EJB EntityBeans.  Entity Beans provide some benefit but 
impose a large amount of overhead.  The benefits include declarative transaction and security 
management, as well as concurrency and caching services.  However, the CAPS application does 
not take advantage of much of these services.  The overhead imposed by using Entity Beans 
impacts both runtime performance and developer productivity.  They are slow to develop.  They 
require the implementation of several classes and deployment descriptors, they rely on a separate 



 
 

JISArchitectureAssessment.doc             Page 61 of 145                                                   9/3/2004 
Confidential 

compilation process, and they require the developer to re-deploy the application.  They are 
difficult to test because they require the services provided by the WebSphere server to run.  
 
Scattered business rules 
There is no central place to perform business rule validations. Those business rules are scattered 
all over the ManagerBeans, which contain much duplicate code.  This causes maintenance 
problems. 
 
Fine-grained project organization 
There are 28 projects including 26 EJB projects, and 2 Web projects. Each EJB is contained in 
its own EJB project. 
 
Source tree difficult to manage in development environment 
WSAD project files have not been added to the perforce source tree. So it is very difficult to 
import the source java files in to WSAD workspace.  
 
Merits of CAPS architecture 
 
Simple and Layered Architecture 
The CAPS architecture generally maintains a separation of concerns in various layers so it is 
easily maintainable.  
 
JavaDocs standards followed 
The code has adequate documentation. 
 
Course-grained entity beans 
Uses coarse-grained EntityBeans instead of fine-grained EntityBeans which greatly enhances 
maintainability. 
 
Data Access Objects 
The Entity Beans delegate their persistence logic to Data Access Objects, which are easier to 
maintain, can be tested more efficiently, and allow for a looser coupling between the application 
code and the database schema. 
 
Ability to address multiple court levels 
There are 2 session beans, viz. CaseInformationManager and ParticipantInformationManager, 
which address the issue of retrieving data from multiple court levels. These beans have generic 
methods, “getCaseInformation” and “getAllParticipants” respectively, which accept 
“COURTCONSTANTS” as input, and based on that return the correct data.  Thus, these beans 
provide a way of factoring out vertical segments of functionality, managing cases, managing 
events and managing participants.  
 



 
 

JISArchitectureAssessment.doc             Page 62 of 145                                                   9/3/2004 
Confidential 

 
Source Lines of Code (excluding comments and white spaces) 

CLASS NAME 
TOTAL 
LINES 

ProceedingQueryEngine.java 3611 
CalendarSessionQueryEngine.java 2577 
ProceedingManagerBean.java 2326 
SessionSetupHelper.java 2197 
CalendarManagementHelper.java 2082 
SetProceedingHelper.java 2048 
ProceedingSubtypeHelper.java 1331 
OutcomeHelper.java 1227 
ProceedingSubtypeQueryEngine.java 1206 
ResourceSetupHelper.java 1132 
CalendarSessionManagerBean.java 1065 
RecurrenceQueryEngine.java 948 
AssignmentQueryEngine.java 927 
SessionProxyManagerBean.java 917 
ResourceAssignmentHelper.java 796 
ResourceQueryEngine.java 794 
OANInfoQueryEngine.java 714 
CapsHelper.java 654 
ResourceManagerBean.java 648 
ProceedingSubtypeManagerBean.java 624 
DateConverter.java 589 
ClientProxy.java 560 
CaseInfoQueryEngine.java 559 
LoginHelper.java 545 
AssignmentManagerBean.java 536 
SessionExceptionHelper.java 533 
CalendarSetupHelper.java 489 
OutcomeQueryEngine.java 481 
BatchHelper.java 478 
OutcomeManagerBean.java 469 
OANInfoHelper.java 467 
ProceedingDetailHelper.java 457 
ReschedulePendingHelper.java 440 
CTCQueryEngine.java 436 
CalendarQueryEngine.java 392 
ResourceUnavailabilityHelper.java 387 
RecurrenceResolver.java 347 
OrganizationQueryEngine.java 344 
CaseNumberFormatter.java 334 
ScomisMappingHelper.java 324 
CapsSessionProxyManagerBean.java 324 
CalendarManagerBean.java 292 



 
 

JISArchitectureAssessment.doc             Page 63 of 145                                                   9/3/2004 
Confidential 

ProcessLevelSecurityImpl.java 273 
OfficialQueryEngine.java 272 
ServerHelper.java 240 
OfficialManagerBean.java 237 
ClientUtil.java 220 
ParticipantInfoQueryEngine.java 216 
RecurrenceUtil.java 213 
CapsErrorMessageConstants.java 213 
OrganizationManagerBean.java 203 
AuthenticationQueryEngine.java 201 
CaseInformationManagerBean.java 199 
ServerValidator.java 198 
DataCacheHolder.java 196 
ProceedingBean.java 188 
RecurrenceManagerBean.java 185 
ScheduledProceedingBO.java 184 
PersonFinder.java 182 
P.java 176 
AuthenticationManagerBean.java 170 
CalendarManagementHelperConstants.java 167 
ProceedingData.java 166 
QueryConstants.java 163 
CommonOutcomeData.java 162 
OANInfoTO.java 156 
RecurrenceData.java 155 
SecurityQueryEngine.java 153 
ScomisProceedingData.java 152 
BaseCaseInformationData.java 149 
SuperFileReaderImpl.java 149 
TokenGenerator.java 148 
DataValidator.java 143 
CodeReaderImpl.java 136 
ParticipantInformationManagerBean.java 129 
MessageParser.java 125 
PersonTO.java 125 
ProceedingSubtypeData.java 124 
CapsWebHelperFactory.java 122 
SetProceedingHelperConstants.java 117 
ConfirmationData.java 117 
OacDateFormatter.java 116 
UnavailabilityData.java 113 
ResourceCategoryPersistentRepository.java 112 
OANInformationManagerBean.java 112 
SessionSetupHelperConstants.java 111 
ProceedingExceptionalData.java 111 
ErrorHolidayHolder.java 110 



 
 

JISArchitectureAssessment.doc             Page 64 of 145                                                   9/3/2004 
Confidential 

HolidayHolder.java 110 
WarningHolidayHolder.java 110 
ProceedingDetailData.java 110 
ProceedingSubtypeBean.java 110 
JndiContextHelper.java 110 
TimeDTO.java 107 
SessionProxyManager.java 104 
ResourceData.java 102 
SessionData.java 102 
BaseOANInformationData.java 102 
SessionTimeslotBO.java 101 
EnvironmentUtils.java 101 
JNDIHelper.java 100 
ParticipantProceedingData.java 99 
CaseTypeHolder.java 98 
BaseCourtApplicationData.java 98 
TransformManager.java 98 
LogEntry.java 98 
OANNumberFormatValidator.java 96 
ProceedingSQLHelper.java 95 
Masseuse.java 95 
BaseCaseInformationDataComparator.java 95 
ResourceCategoryHolder.java 93 
SessionProceedingData.java 93 
ProceedingSubtypeHolder.java 92 
CapsHelperConstants.java 92 
ResourceAssignmentData.java 92 
UserData.java 92 
CapsStaticDataHelper.java 90 
SharedConstants.java 90 
CaseCompletionData.java 90 
CapsSessionProxyManager.java 88 
OfficialSubtypeHolder.java 87 
OutcomeHelperConstants.java 87 
ProceedingSequencingData.java 86 
DataTypeConvertor.java 86 
DataTypeConvertor.java 86 
OutcomeHolder.java 83 
ResourceAssignmentHelperConstants.java 83 
SessionSummaryData.java 83 
ProceedingSubtypeHelperConstants.java 81 
CTCBean.java 81 
SerializeDataObjectToXml.java 81 
ProceedingTypeHolder.java 80 
SecurityContext.java 80 
JDBCLogManager.java 80 



 
 

JISArchitectureAssessment.doc             Page 65 of 145                                                   9/3/2004 
Confidential 

AssignmentReasonHolder.java 78 
BeanHomeHolder.java 77 
MailHelper.java 77 
OrganizationSubtypeHolder.java 75 
ContextualAclEntry.java 75 
StaticDataHolder.java 75 
SecurityManagerBean.java 74 
DateCalculator.java 74 
OfficialTypeHolder.java 73 
ProceedingTypeCaseTypeHolder.java 73 
ResourceSetupHelperConstants.java 72 
DateBasedRefreshCache.java 72 
MultiSessionOutcomeData.java 71 
TimeRangeDetailData.java 71 
Resources.java 71 
SessionExceptionHelperConstants.java 70 
ResourceBean.java 70 
UnavailabilityBean.java 70 
StaticDataHelper.java 68 
ParticipantTypeHolder.java 67 
ResourceUnavailabilityHelperConstants.java 67 
JSPUtil.java 66 
CalendarBean.java 66 
CalendarSessionBean.java 66 
BaseCourtData.java 65 
CourtDescriptionHolder.java 64 
ProceedingDetailHelperConstants.java 64 
ResourcePersistentRepository.java 64 
AddressData.java 64 
SessionOutcomeData.java 63 
PersonData.java 63 
ServletParameterParser.java 62 
SimpleSessionData.java 61 
ProceedingDetailDataComparator.java 61 
LoggerBean.java 61 
PermissionCollection.java 60 
BaseResourceData.java 59 
JudicialOfficerPersistentRepository.java 59 
ParticipantData.java 59 
CalendarSessionSQLHelper.java 58 
ProceedingSubtypeKey.java 58 
OrganizationPersistentRepository.java 57 
SFCPRCNData.java 56 
AccessControlEntry.java 56 
SPLogManager.java 55 
CaseTypeKeyHolder.java 53 



 
 

JISArchitectureAssessment.doc             Page 66 of 145                                                   9/3/2004 
Confidential 

ProceedingCommonData.java 53 
ResourceServerData.java 52 
ProceedingDTO.java 52 
SimpleCalendarData.java 51 
ScomisProceedingDataComparator.java 50 
CapsDatabaseDataStore.java 49 
CTCKey.java 49 
SequencingHelper.java 48 
ScomisMappingHelperConstants.java 47 
SessionExceptionSummaryData.java 46 
ResourceAssignmentSQLUtil.java 46 
ConnectionInfo.java 46 
BeanManagedEntityBean.java 46 
ServletManager.java 46 
BaseContentHandler.java 46 
SessionSetupHelperErrorMessageConstants.java 45 
ProceedingSubtypeSummaryData.java 45 
ResourceNames.java 45 
RowProperties.java 45 
DomReader.java 45 
CaseTypeClosedProceedingData.java 44 
SessionResourcePersistentRepository.java 44 
ParticipantTypeDataComparator.java 44 
WASPooledConnectionBuilder.java 44 
SecurityPolicy.java 44 
ProceedingResourcePersistentRepository.java 43 
BaseCapsDatesDataComparator.java 43 
CompressCharacters.java 43 
OANInfoHelperConstants.java 42 
ResourceAssignmentDataComparator.java 42 
PropertyInspector.java 42 
ReschedulePendingHelperConstants.java 41 
ProceedingSubtypeServerData.java 41 
ProceedingManager.java 41 
BaseCourtApplicationDataComparator.java 41 
ResourceDataComparator.java 41 
DataFormatter.java 41 
BatchHelperConstants.java 40 
CommonCalendarSessionData.java 40 
ResourceCategory.java 40 
ValidationUtils.java 40 
ResourceType.java 39 
DataTypeConvertor.java 39 
EmailData.java 39 
Validate.java 39 
ParserManager.java 39 



 
 

JISArchitectureAssessment.doc             Page 67 of 145                                                   9/3/2004 
Confidential 

CalendarSessionManager.java 38 
SFCSTATData.java 38 
KeyValueFlagData.java 37 
EnvironmentConstants.java 37 
DatabaseSessionBean.java 37 
BaseCapsDatesData.java 36 
ReschedulePendingData.java 36 
CaseTypeDataComparator.java 36 
NameFormatter.java 36 
Trace.java 36 
KeyValuePairDataComparator.java 36 
ProceedingSubtypeHelperErrorMessageConstants.java 35 
LoginHelperConstants.java 34 
ProceedingHistoryBean.java 33 
SocialSecurityNumberFormatter.java 33 
SelectedCourtsData.java 33 
BaseControllerServlet.java 33 
LogManagerBean.java 33 
ViewData.java 32 
AbstractResource.java 32 
Format.java 32 
BatchData.java 31 
UserServerData.java 31 
DateRange.java 31 
ResourceCategoryList.java 31 
SecurityConstants.java 31 
SessionProceedingDataComparator.java 31 
ResourceSetupHelperErrorMessageConstants.java 30 
Court.java 30 
ResourceDto.java 30 
ConnectionProperties.java 30 
OANInfoSQLHelper.java 30 
ProceedingSubtypeManager.java 29 
SubtypeData.java 28 
CapsSecurityContext.java 28 
BeanNameConstants.java 28 
DateCompare.java 28 
AccessControlContext.java 28 
CalendarManagementHelperErrorMessageConstants.java 27 
OutcomeHelperErrorMessageConstants.java 27 
ResourceAssignmentHelperErrorMessageConstants.java 27 
SetProceedingHelperErrorMessageConstants.java 27 
KeyValuePairDataObject.java 27 
ProceedingSubtypeSQLHelper.java 26 
ServiceLocatorHelper.java 26 
ByteArrayToken.java 25 



 
 

JISArchitectureAssessment.doc             Page 68 of 145                                                   9/3/2004 
Confidential 

AssignmentManager.java 25 
CapsStaticDataHolder.java 24 
CalendarSetupHelperConstants.java 24 
ProceedingResource.java 24 
UserPrincipal.java 24 
ServiceLocatorHolder.java 24 
SessionExceptionHelperErrorMessageConstants.java 23 
ResAsgGroupRelationData.java 23 
CacheSQLHelper.java 23 
RecurrenceSQLHelper.java 23 
AcordsException.java 23 
QueryEngineAdapter.java 23 
AclPermission.java 23 
CapsWebHelperFactoryConstants.java 22 
ResourceCategoryDto.java 22 
ResourceTypeDto.java 22 
AssignmentSQLHelper.java 22 
ResourceManager.java 22 
CapsServiceLocator.java 22 
CaseInformationManager.java 22 
PropertiesReader.java 22 
PropertiesReader.java 22 
OutcomeManager.java 21 
DataAccessEngine.java 21 
ApplicationException.java 21 
SystemException.java 21 
SingletonCacheHelper.java 21 
CapsHelperErrorMessageConstants.java 20 
ResourceCategorySearchCriteria.java 20 
CalendarManager.java 20 
SecurityPrincipal.java 20 
ErrorMessageConstants.java 20 
OANInformationManager.java 20 
CapsCacheConstants.java 19 
WebControllerServlet.java 19 
ResourceGroupData.java 19 
SessionResource.java 19 
CourtDto.java 19 
ResourceAccessLevel.java 19 
Debug.java 19 
CalendarSetupHelperErrorMessageConstants.java 18 
CapsSecurityPolicy.java 18 
Proceeding.java 18 
ProceedingKey.java 18 
RecurrenceManager.java 18 
ScomisMappingHelperErrorMessageConstants.java 17 



 
 

JISArchitectureAssessment.doc             Page 69 of 145                                                   9/3/2004 
Confidential 

ResourceSQLHelper.java 17 
CalendarSessionKey.java 17 
ProceedingHistoryKey.java 17 
UnavailabilityKey.java 17 
CaseInfoSQLHelper.java 17 
CodeReaderContentsImpl.java 17 
ServiceLocator.java 17 
OANNumberData.java 17 
ResourceUnavailabilityHelperErrorMessageConstants.java 16 
ByteArrayTokenDto.java 16 
ResourceCategoryListDto.java 16 
CalendarKey.java 16 
ResourceKey.java 16 
OfficialManager.java 16 
OrganizationManager.java 16 
OacHighLowDates.java 16 
LoginHelperErrorMessageConstants.java 15 
ProceedingDetailHelperErrorMessageConstants.java 15 
AuthenticateException.java 15 
SessionAdapter.java 15 
FrameworkBaseException.java 15 
XPathManager.java 15 
XmlContentHandler.java 15 
CalendarSessionViewData.java 14 
BatchCaseData.java 14 
ResourcePath.java 14 
ProceedingSubtype.java 14 
RowInfo.java 14 
QueryEngine.java 14 
EntityAdapter.java 14 
ReschedulePendingHelperErrorMessageConstants.java 13 
AssignmentGroupData.java 13 
ClientConfirmationData.java 13 
ParentChildIndexData.java 13 
SessionExceptionData.java 13 
ResourceTypes.java 13 
SecurityProperties.java 13 
OutcomeSQLHelper.java 13 
ErrorMessageConstants.java 13 
CodeReaderImpl_JDBC.java 13 
DateKeyComparator.java 13 
QueryEngineFactoryImpl.java 13 
AppServerJndiConstants.java 13 
BatchHelperErrorMessageConstants.java 12 
OANInfoHelperErrorMessageConstants.java 12 
ResourceTypePath.java 12 



 
 

JISArchitectureAssessment.doc             Page 70 of 145                                                   9/3/2004 
Confidential 

AuthenticationManager.java 12 
CourtConstants.java 12 
ImmutableUserData.java 12 
DataStoreFactoryImpl.java 12 
ParticipantInfoSQLHelper.java 12 
ResourceCategoryPath.java 11 
CapsSecurityException.java 11 
InvalidValueException.java 11 
RecordAlreadyExistException.java 11 
RecordNotFoundException.java 11 
ProceedingHistoryHome.java 11 
BusinessObjectType.java 11 
ImmutableQueryEngine.java 11 
BaseData.java 11 
RecordAlreadyExistException.java 11 
RecordNotFoundException.java 11 
ParticipantInformationManager.java 11 
CalendarSessionData.java 10 
Resource.java 10 
CourtPath.java 10 
PurificationException.java 10 
CalendarSQLHelper.java 10 
OfficialSQLHelper.java 10 
ProceedingSubtypeHome.java 10 
CalendarNameComparator.java 10 
NoDVIParticipantException.java 10 
DataInconsistencyException.java 10 
DataModifiedException.java 10 
FrameworkImplementationException.java 10 
Timeslot.java 9 
BasicResource.java 9 
JudicialOfficer.java 9 
Organization.java 9 
ByteArrayTokenPath.java 9 
ResourceCategoryListPath.java 9 
ProceedingResourceRepository.java 9 
ResourceRepository.java 9 
SessionResourceRepository.java 9 
AuthenticationSQLHelper.java 9 
ProceedingHome.java 9 
SecurityManager.java 9 
InvalidParameterException.java 9 
ImmutableBaseCourtData.java 9 
CacheConstants.java 9 
LogManager.java 9 
LogManager.java 9 



 
 

JISArchitectureAssessment.doc             Page 71 of 145                                                   9/3/2004 
Confidential 

OANInfoQueryEngineErrorConstants.java 9 
CourtValidator.java 8 
DateRangeValidator.java 8 
ResourceTypeSearchCriteria.java 8 
JudicialOfficerRepository.java 8 
OrganizationRepository.java 8 
ResourceTypeRepository.java 8 
CalendarHome.java 8 
CalendarSessionHome.java 8 
CTCHome.java 8 
ResourceHome.java 8 
UnavailabilityHome.java 8 
QueryConstants.java 8 
IncompleteInformationException.java 8 
InvalidCaseTypeException.java 8 
InvalidDateFormatException.java 8 
InvalidLogonException.java 8 
InvalidPersonTypeException.java 8 
ScomisCaseOnlyException.java 8 
DataStore.java 8 
Logger.java 8 
QueryConstants.java 8 
SequencingHelperConstants.java 7 
Fickle.java 7 
OperationException.java 7 
SecuritySQLHelper.java 7 
SuperFileReader.java 7 
ExceptionSubTypes.java 7 
ExceptionTypes.java 7 
AclContext.java 7 
Helper.java 7 
PersonComparator.java 7 
ObjectUtil.java 7 
DetailSessionViewData.java 6 
DirtyDataException.java 6 
CaseOfflineException.java 6 
OrganizationSQLHelper.java 6 
CodeReader.java 6 
PropertiesNotFoundException.java 6 
InvalidBusinessStateException.java 6 
BeanManagedEntity.java 6 
EJBConstants.java 6 
DataStoreAccessException.java 6 
ParameterNotFoundException.java 6 
AccessLevel.java 6 
ErrorMessageConstants.java 6 



 
 

JISArchitectureAssessment.doc             Page 72 of 145                                                   9/3/2004 
Confidential 

RollbackException.java 5 
ResourceSQLUtil.java 5 
ResourceCategoryRepository.java 5 
JudicialOfficerSQLUtil.java 4 
OrganizationSQLUtil.java 4 
ResourceCategorySQLUtil.java 4 
ConnectionBuilder.java 4 
DeletionFailureException.java 4 
IncompleteObjectException.java 4 
InsertionFailureException.java 4 
InvalidJISUserException.java 4 
InvalidPasswordException.java 4 
InvalidTokenException.java 4 
NoDataFoundException.java 4 
NoDefaultParticipantException.java 4 
NoSessionFoundException.java 4 
UpdateFailureException.java 4 
DataStoreFactory.java 4 
QueryEngineFactory.java 4 
DataObject.java 4 
ContextualPolicy.java 4 
Policy.java 4 
ServletConstant.java 4 
ContentHandlerConstants.java 4 
DynamicMapper.java 4 
XmlConstants.java 4 
Identifiable.java 3 
ImmutableCapsSecurityPolicy.java 3 
AssignmentManagerHome.java 3 
AuthenticationManagerHome.java 3 
CalendarManagerHome.java 3 
CalendarSessionManagerHome.java 3 
CapsSessionProxyManagerHome.java 3 
OfficialManagerHome.java 3 
OrganizationManagerHome.java 3 
OutcomeManagerHome.java 3 
ProceedingManagerHome.java 3 
ProceedingSubtypeManagerHome.java 3 
SessionProxyManagerHome.java 3 
RecurrenceManagerHome.java 3 
ResourceManagerHome.java 3 
SecurityManagerHome.java 3 
CaseInformationManagerHome.java 3 
OACException.java 3 
DataTransferObjectType.java 3 
ImmutableSecurityPolicy.java 3 



 
 

JISArchitectureAssessment.doc             Page 73 of 145                                                   9/3/2004 
Confidential 

ServiceLocatorCacheConstants.java 3 
HelperFactory.java 3 
LoggerHome.java 3 
LogManagerHome.java 3 
OANInformationManagerHome.java 3 
ParticipantInformationManagerHome.java 3 
SequencingHelperErrorMessageConstants.java 2 
Calendar.java 2 
CalendarSession.java 2 
CTC.java 2 
ProceedingHistory.java 2 
Resource.java 2 
Unavailability.java 2 
ExceptionNoDefaultParticipant.java 2 
InvalidJabsUserException.java 2 
InvalidJabsUserException.java 2 
InvalidJISUserException.java 2 
InvalidPasswordException.java 2 
InvalidTokenException.java 2 
NoDataFoundException.java 2 
NoSessionFoundException.java 2 
LogQueryEngine.java 2 
ErrorMessageConstants.java 2 
QueryConstants.java 2 
    
TOTAL (526 classes) 58710 

 



 
 

JISArchitectureAssessment.doc             Page 74 of 145                                                   9/3/2004 
Confidential 

APPENDIX C: JIS ARCHITECTURE EVALUATION 
 
The current JIS architecture was intended to provide a common framework which the JIS 
Migration project could be based on.  This framework was developed by the AOC for a year or 
so and was expected to support the efforts of multiple development teams working concurrently 
in distributed locations.  The goal of the framework was to ensure that these teams would be 
following a consistent development strategy as they implement new business functionality.  This 
architecture was intended to evolve over a period of several years, becoming more refined as 
more use cases were implemented. 
 
The architecture supports the development of a single desktop application that would be used by 
all court levels but would eventually provide personalized views for various types of individual 
users.  It also provides a Service Layer that provides a common set of application services which 
can be consumed by the desktop application or by external applications using Web Services. 
 
The architecture was designed to support agile development processes.  Certain design decisions 
were made specifically to support unit testing.  The entire framework was intended to support an 
iterative development process.  The deployment and configuration models were intended to 
support continuous integration practices. 
 
The New JIS architecture is described on the AOC intranet at 
http://inside.courts.wa.gov/jis/eaa/sad/index.cfm. 
 
Current Project Status 
The New JIS application is deployed in production, providing some Web Service integration 
with King County’s systems.  The desktop application currently provides only a very minimal set 
of functionality for filing simple docket entries.  There is no current plan to deploy the desktop 
application into production.  Additionally, there is no coherent database and data management 
strategy for the JIS Migration effort.  There is also no security architecture built. 
 
Architecture Details 
 
Database Architecture 
The legacy systems which the JIS Migration effort is intended to replace are all built on a single 
database.  This database schema is extremely complicated.  The JIS Migration plan anticipated 
that the data model would be evolved as business practices evolved to be more similar between 
various court levels.  The New JIS architecture was designed to support a common data model 
shared by all courts.   
 
A new database schema (NJISLOC) was designed and is used by the New JIS application 
development process, but no data migration or synchronization strategy was developed to 
support the deployment of this schema.  The JIS application now uses some parts of the legacy 
database and some parts of the new database.   



 
 

JISArchitectureAssessment.doc             Page 75 of 145                                                   9/3/2004 
Confidential 

Layered Architecture 
The JIS Architecture is a layered architecture, with different pieces of application functionality 
separated into different layers.  This is intended to minimize the dependencies between various 
pieces of code and improve maintainability.  The various layers serve to isolate the effects of 
change. 
 

 
Figure 1 JIS Layers 
 
Persistence Layer 
The Persistence Layer provides the services which transfer data into and out of the databases and 
potentially other data stores.  It is currently implemented with a variety of strategies.  EJB 1.1 
Entity Beans are used to insert and update data and JDBC/SQL is used for querying.   
 
The Entity Beans require a simple one-to-one mapping of EJB to database table.  Because of the 
complexity of the legacy database, this requires a very large number of entity beans to map to a 
single domain entity.  The NJISLOC schema maps more closely to the domain model so the 
number of Entity Beans is fewer.  However, the existence of two databases means that two 
separate sets of Entity Beans.  Additionally, there is additional logic implemented which maps 
the two data models to the single domain model.   
 
Domain Layer 
The Domain Layer serves to provide a single model of the application’s business logic.    
Domain layer services expose domain logic to service layer. 
 
 



 
 

JISArchitectureAssessment.doc             Page 76 of 145                                                   9/3/2004 
Confidential 

 
Figure 2 JIS Domain Layer 
 
Service Layer 
Services are exposed as Session Bean methods.  The session bean infrastructure provides several 
features, but the only one that the JIS architecture uses is transaction management.  The EJB 
container coordinates the transactions between this layer and the Entity Beans in the Persistence 
Layer.  Session Bean method parameters are Data Transfer Objects. 
 
 

 
Figure 3 JIS Service Layer 
 
Transport Layer 
The Transport Layer is responsible for the communication between the client application and the 
server.  A large portion of the JIS framework was written to support this layer.  It requires 
application developers to implement request and response components for each service to be 
consumed by the client application.  The developer also must implement Data Transfer Objects, 
classes which contain data that gets sent into and out of the service layer.  The framework 
provides a mechanism for marshalling this data over HTTP and binding it to Presentation Layer 
components.  



 
 

JISArchitectureAssessment.doc             Page 77 of 145                                                   9/3/2004 
Confidential 

 
Web Services also are implemented using the Data Transfer Object architecture. 

  

Figure 4 JIS Transport Layer 
 
Presentation Layer 
The Presentation Layer consists of custom Swing user interface components and GraphPath 
architecture.  The GraphPath is intended to bind a portion of the data contained in the Data 
Transfer Objects to the custom Swing components.  



 
 

JISArchitectureAssessment.doc             Page 78 of 145                                                   9/3/2004 
Confidential 

 
Figure 5 JIS UI Layer 
 
Testing Architecture 
The current JIS architecture and process rely on thorough test coverage for unit tests.  The unit 
test suite currently consists of approximately 500 tests.  The architecture provides a framework 
based on JUnit and JUnit extensions to allow for tests which are integrated with the continuous 
integration processes.   
 
Security Architecture 
The current JIS Architecture documentation addresses security issues but there is no support for 
authorization, authentication, or personalization in the current framework. 
 
JIS Process 
Team-based, iterative approach 
The current JIS Application development process is a team-based iterative approach.  The 
process provides successful mechanisms for communication between multiple distributed teams.   
 
Continuous Integration 
Continuous Integration is the practice of having a build and test process that provides constant 
verification of the state of the code base.  The JIS architecture is one single code base that is not 
branched or versioned.  It is shared by several distributed teams.  If one team member checks in 
code that prevents the application from building, it can drastically affect the productivity of all 
teams.  A continuous integration process minimizes this risk. 
 
The continuous integration process for the current JIS application is a set of Ant scripts which 
are designed to run nightly on a server at AOC. 



 
 

JISArchitectureAssessment.doc             Page 79 of 145                                                   9/3/2004 
Confidential 

New JIS Limitations 
 
1. Database 
It is required that the New JIS application allow users to access data which is maintained by 
legacy applications.  It is also required that data modified with the New JIS Application be 
viewed in the legacy applications.  There has been no database architecture designed to address 
these difficult requirements. 
 
1.1. The legacy data model is very complex and it does not match the New JIS application’s 
domain model  
The legacy schema supports each of the court layers with different entities but the New JIS 
Application treats each court layer the same.  This dramatically slows the pace of development 
for the New JIS application.  The application developer is forced to add persistence logic for 
three separate structures and then combine them into one new model.  This effectively 
quadruples the amount of code which must be written when new persistence logic is needed.  A 
database architecture could be designed which would provide a simplified interface which would 
isolate much of this complexity from the application developer. 
 
1.2. The legacy schema relies on a mechanism for creating identifiers that can only be used 
on the mainframe 
The JIS architecture does not provide a strategy for inserting new data in the legacy database.  A 
new database architecture must not rely on any functionality that can only exist on the 
mainframe. 
 
1.3. The new NJISLOC schema doesn’t match the new JIS application requirements 
It hasn’t evolved through the same agile process as the code base.  It consists mostly of structures 
that were copied from the legacy schema.  Because these structures don’t map closely to the JIS 
application’s domain model, it complicates the implementation of new business logic.  A new 
database architecture is necessary to isolate the application developer from this complexity. 
 
1.4. The databases aren’t maintained well with the continuous integration system and build 
system 
The artifacts which maintain the database schema for the mainframe production system are not 
maintained with the build and continuous integration system.  They can easily become out of 
synch, causing problems which aren’t found until deployment time.  A new database architecture 
should decouple the artifacts necessary for maintaining the production system from those that 
maintain development databases. 
 
1.5. The database naming conventions make the database structures difficult to understand 
Table and column names are not easily human readable.  Application developers should be 
isolated from these legacy artifacts. 
 
1.6. There is no strategy for managing test and sample data 
Data used for unit testing is managed in an ad hoc fashion as new tests are created and 
maintained.  There is no simple way to initialize the database with a testbed of data.  There is no 
way to enter data in the legacy database for testing purposes without manually entering it 
through the various legacy applications.  Additionally, no sample data has been provided for 



 
 

JISArchitectureAssessment.doc             Page 80 of 145                                                   9/3/2004 
Confidential 

acceptance testing and functional testing purposes. A new database architecture is necessary to 
simplify the management of testing data. 
 
2. Persistence Layer 
 
2.1. The variety of technologies increases the persistence layer complexity 
The persistence layer uses both EJB 1.1 Entity Beans and JDBC with SQL statements. This 
requires developers to understand and maintain both of these mechanisms.  More sophisticated 
Object/Relational mapping strategies exist which can remove much of this complexity. 
 
2.2. Multiple datasources increase the persistence layer complexity 
The persistence layer is responsible for synchronizing the data between the legacy database and 
the new schema as well as mapping the data model to the application domain model.  This has 
not yet been implemented and will be very difficult to support.  Each datasource requires its own 
EJB project and mapping, as well.  A more efficient database architecture could provide a single 
view of the data from the application’s perspective, allowing the application developer to focus 
on the JIS business domain logic. 
 
2.3. One to one mapping with the database schema increases complexity 
The Object/Relational mapping functionality provided by EJB 1.1 is primitive.  It requires a 
single Entity Bean for each database table.  A more sophisticated mapping technology could 
simplify this. 
 
2.4. The Code/compile/test process is very slow 
EJBs each require several files to be maintained.  Whenever one of these is changed the entire 
project must be rebuilt and redeployed before unit tests can be run.  Other alternatives exist that 
do not require this extra overhead. 
 
2.5. EJBs complicate the build process 
The Entity Beans require WebSphere to generate code before they can be deployed.  They also 
have specific packaging requirements.  Again, alternative Object/Relational mapping 
technologies do not have this overhead. 
 
2.6. SQL is very complicated for accessing the legacy database 
Because of the complexity and the difficult naming conventions, it is very difficult for 
application developers to write the necessary SQL to access the legacy schema.  A more efficient 
database architecture could simplify this and an effective Object/Relational mapping strategy 
would generate the necessary SQL. 
 
2.7. Tight coupling exists between the application code, deployment descriptors, and 
database schema 
Small database changes can require a significant amount of application code to change.  An 
Object/Relation mapping layer can provide a layer of abstraction which allows these types of 
changes to be isolated. 



 
 

JISArchitectureAssessment.doc             Page 81 of 145                                                   9/3/2004 
Confidential 

 
3. Domain Layer 
 
3.1. The benefits of an isolated domain layer are not fully realized 
The JIS architecture strives to encapsulate all business logic in a single layer of the application to 
reduce the implementation and maintenance costs.  For this strategy to be effective, the 
framework must provide all of the services that the business logic requires.  The framework 
provides only a rudimentary strategy for business rule validation.  It provides no security or 
auditing infrastructure.  A large amount of business logic must be implemented in the persistence 
layer due to limitations of the database and persistence architecture.   
 
Because of limitations of the other layers, an application developer must provide a large amount 
of wiring code to make domain layer functionality useful.  If the Transport and Persistence layers 
were simplified, the domain layer would be more useful. 
 
3.2. The granularity of domain services is inconsistent 
It is not clear whether CRUD (create, read, update, delete) operations should be exposed to 
clients as a single service or as multiple services.  Various adapters have been developed to 
combine multiple service calls and map inconsistent domain concepts outside of the domain 
layer.  
 
3.3. Implementing domain layer services requires complicated mappings between domain 
and transport mechanisms 
The Data Transfer Object architecture is very complicated.  Every service implementation 
requires a large amount of tedious code that an application developer must write to move data 
from Data Transfer Objects to Domain objects.  The framework should handle this 
automatically. 
 
4. Service Layer 
 
4.1. The Session Bean code/compile/deploy/test process is very slow and complicates the 
build process 
EJB Session Beans each require several files.  Additionally, they require WebSphere to generate 
code.  This complicates the build process unnecessarily. 
 
4.2. The framework does not provide auditing, logging, or security for service requests 
These are all important concerns which should be implemented in the service layer. 
 
5.  Transport Layer 
 
5.1. The Data Transfer Object framework is very complicated 
Application developers must write code to map data from Data Transfer Objects to Domain layer 
objects.  This code is tedious, error-prone, and difficult to maintain.  Additionally, the Data 
Transfer Object architecture is not intuitive and complicates the presentation layer code, as well.  
The framework should provide a Transport Layer that requires the application developer to do 
only minimal work to coordinate this communication between the client application and service 
layer. 



 
 

JISArchitectureAssessment.doc             Page 82 of 145                                                   9/3/2004 
Confidential 

6.  Presentation Layer 
 
6.1. The client platform JDK version does not match the development and the production 
environment 
The targeted desktop platform for the JIS client application is JDK 1.4, but the development and 
deployment environments only support JDK 1.3.  The development and deployment 
environments must be upgraded.  
 
6.2. Transfer layer architecture makes client programming very slow 
The UI programming is coupled with the transport mechanics, making UI development very 
slow.  The framework must provide a simpler mechanism than the current Data Transfer Object 
architecture. 
 
7.  JIS application development process 
 
7.1. The continuous integration process needs improvement 
The continuous integration server is not maintained and there is no automated mechanism for 
notifying developers when the build has been broken.  This is very important to prevent one team 
from impacting the productivity of another.  There needs to be a simplified continuous 
integration that allows distributed teams to run their own continuous integration environment, as 
well. 
 
7.2. It is difficult to build and deploy into different environments 
The build process should make it easier to set up new environments.  
 
8.  Testing 
 
8.1. Unit testing is difficult and coverage is not thorough 
There are several limitations of the unit testing architecture.  These are mostly due to the 
complexity of the various layers of the framework.  EJBs are difficult to write unit tests for.  
Because there is no strategy for managing test data, each application developer must write code 
which manages setting up and restoring the environment before and after each test.  Simpler 
mechanisms must be developed which allow test components in isolation. 
 
8.2. No automated acceptance testing strategy has been defined 
The JIS development effort was expected to have a corresponding testing effort which would 
produce automated acceptance tests which would verify each iteration goal.  The architecture, 
however, does not define any strategy for writing and running these tests.  The lack of an 
automated acceptance testing suite makes the application less stable.  An acceptance testing 
strategy should cover testing of the service layer as well as the client application user interface. 
 
8.3. No automated functional testing strategy has been defined 
The JIS development also requires an automated suite to be used for functional and regression 
testing.  There is no automated process to ensure that the JIS application behaves correctly from 
end to end. 
 
8.4. No performance or scalability testing 



 
 

JISArchitectureAssessment.doc             Page 83 of 145                                                   9/3/2004 
Confidential 

No strategy has been defined to measure application performance. 
 
8.5. No management of test data 
Test data must be provided for automated unit tests, acceptance tests, and demonstration 
purposes. 
 
Source Lines of Code (excluding comments and white spaces) 

 
TOTAL 
LINES 

 
EJSLocalCMPCrt_a975ea9a.java 2001 
EJSLocalCMPLaw_3609b123.java 1196 
SubprojectSitePublisher.java 1171 
EJSLocalCMPLwc_41c6fec8.java 986 
CrtBeanFunctionSet_a975ea9a.java 971 
MaintainMiscLawInformationPanel.java 700 
LawBeanFunctionSet_3609b123.java 690 
LawBeanFunctionSet_3609b123.java 656 
TestPersistentCaseRepository.java 612 
EJSLocalCMPDkt_1ab5b17a.java 601 
LwcBeanFunctionSet_41c6fec8.java 556 
ConcreteCrt_a975ea9a.java 518 
PersistentCaseRepository.java 465 
PersistentCaseDocketImpl.java 459 
DktBeanFunctionSet_1ab5b17a.java 445 
DktBeanFunctionSet_1ab5b17a.java 411 
SearchForLawPanel.java 394 
EJSLocalCMPLaw_0c803c3b.java 391 
MaintainLegacyLawInformationPanel.java 386 
TestManageLawServiceSessionBean.java 377 
LawBeanFunctionSet_0c803c3b.java 366 
TestManageCaseServiceSessionBean.java 360 
TestInMemoryCaseRepository.java 342 
ConcreteLaw_3609b123.java 336 
CaseNumberFormatter.java 333 
RequirementsModel.java 323 
EJSLocalCMPCEA_c6bc28a7.java 321 
LawInformationPanel.java 307 
TestPersistentCredentialsRepository.java 303 
CEABeanFunctionSet_c6bc28a7.java 300 
MaintainLawInformationPanel.java 298 
AddressBookPanel.java 298 
CsBeanFunctionSet_bbd7c1f8.java 295 
DocketDetailsPanel.java 294 
ConcreteLwc_41c6fec8.java 294 
FilterDecoratorTableModelTest.java 292 
InMemoryCodeValueListRepository.java 290 



 
 

JISArchitectureAssessment.doc             Page 84 of 145                                                   9/3/2004 
Confidential 

TestElectronicFilingCredentialsServicesSessionBean.java 289 
CrtBeanCacheEntryImpl_a975ea9a.java 287 
EJSLocalCMPContact_9e696b51.java 286 
EJSLocalCMPCs_bbd7c1f8.java 286 
XMLSecurityServiceImpl.java 285 
CmtBeanFunctionSet_0cb78212.java 285 
CaseSearchController.java 280 
TestCredentialValidationRules.java 279 
PersistentLawRepository.java 274 
DB2DDLConverter.java 273 
CmtBeanFunctionSet_7e04ce8b.java 271 
CEABeanFunctionSet_c6bc28a7.java 266 
Law.java 264 
CodeMetricsPublisher.java 264 
CsBeanFunctionSet_bbd7c1f8.java 261 
DocketPanel.java 258 
TestDocketEntryWebService.java 258 
JISInMemoryCodeValueListRepository.java 254 
EJSLocalCMPCmt_7e04ce8b.java 251 
CtcBeanFunctionSet_df1f44d1.java 251 
SfcBeanFunctionSet_9aca3e38.java 251 
EJSLocalCMPCmt_0cb78212.java 251 
CmtBeanFunctionSet_0cb78212.java 251 
ContactBeanFunctionSet_9e696b51.java 236 
JCalendarComboBox.java 234 
CrtBeanAdaptorBinding_a975ea9a.java 233 
GraphPath.java 228 
JCalendarPanel.java 227 
LawBeanAdaptorBinding_3609b123.java 225 
RequirementFactory.java 215 
EfilingCredentialServiceSoapBindingStub.java 213 
DataTransferObjectAdapter.java 212 
BrowserController.java 211 
PerBeanFunctionSet_1545092a.java 210 
DocketEntryServiceBindingStub.java 208 
ConcreteDkt_1ab5b17a.java 206 
AbstractServiceProviderContainer.java 205 
DocketEntryServiceDelegate.java 200 
AddDocketEntryInformation.java 196 
GUICaseSearchMainView.java 196 
CrtBean.java 192 
DktBeanAdaptorBinding_1ab5b17a.java 191 
StubSearchForLawPanel.java 189 
LawBeanAdaptorBinding_3609b123.java 189 
Handler.java 183 
TestLawDto.java 181 
JXDDSchemaFormatter.java 180 



 
 

JISArchitectureAssessment.doc             Page 85 of 145                                                   9/3/2004 
Confidential 

LwcBeanAdaptorBinding_41c6fec8.java 177 
LawBeanCacheEntryImpl_3609b123.java 177 
LawBeanCacheEntryImpl_3609b123.java 177 
ConcreteLaw_0c803c3b.java 176 
PerBeanFunctionSet_1545092a.java 176 
CEABeanAdaptorBinding_c6bc28a7.java 175 
CsBeanAdaptorBinding_bbd7c1f8.java 173 
AddressBookMainController.java 171 
CmtBeanAdaptorBinding_0cb78212.java 171 
SortDecoratorTableModelTest.java 169 
GraphPathTest.java 166 
TestObjectPath.java 165 
DefaultIntrospectionAdapter.java 164 
TestRequirementsModel.java 164 
GUIAddressBookMainView.java 164 
PerBeanAdaptorBinding_1545092a.java 163 
ElectronicFilingCredentialServicesBeanBean.java 162 
JUnitEEEntityBeanFunctionSet_3580e985.java 161 
TestLawDomain.java 160 
TestCRTEntityBean.java 156 
TestDocketEntryDto.java 155 
DktBeanAdaptorBinding_1ab5b17a.java 155 
DocketEntry.java 154 
TestLAWEntityBean.java 154 
TestCaseNumberFormatter.java 153 
SortDecoratorTableModel.java 152 
TestXMLSecurityServiceImpl.java 152 
JMonthPanel.java 151 
LawBeanAdaptorBinding_0c803c3b.java 151 
TestPersistentCaseDocketImpl.java 150 
TestEfilingCredentialService.java 147 
LwcBeanCacheEntryImpl_41c6fec8.java 147 
MainPanel.java 145 
TestDocketDetailsController.java 143 
AbstractTransportTest.java 140 
OverlayWindow.java 140 
CmtBeanAdaptorBinding_7e04ce8b.java 139 
CEABeanAdaptorBinding_c6bc28a7.java 139 
CtcBeanAdaptorBinding_df1f44d1.java 137 
SfcBeanAdaptorBinding_9aca3e38.java 137 
CsBeanAdaptorBinding_bbd7c1f8.java 137 
DecoratorTableModelFactoryTest.java 136 
ContactBeanAdaptorBinding_9e696b51.java 135 
ConcreteCmt_7e04ce8b.java 135 
TestInMemoryLogEntryRepository.java 135 
CmtBeanAdaptorBinding_0cb78212.java 135 
GraphNodeButtonGroupModelTest.java 134 



 
 

JISArchitectureAssessment.doc             Page 86 of 145                                                   9/3/2004 
Confidential 

ConcreteCEA_c6bc28a7.java 134 
ConcreteCs_bbd7c1f8.java 134 
TestPersistentLawRepository.java 133 
TestDocketEntryServiceDelegate.java 132 
ExcelIterationPlan.java 132 
CaseFactoryForTests.java 130 
ObjectPath.java 129 
StackTrace.java 127 
PerBeanAdaptorBinding_1545092a.java 127 
TestServerlessCaseSearchController.java 126 
SortableTableColumn.java 126 
CrtBeanInjectorImpl_a975ea9a.java 126 
ConcreteCmt_0cb78212.java 126 
JUnitEEEntityBeanAdaptorBinding_3580e985.java 125 
TestSingleAttribute.java 124 
TestAddressBookController.java 124 
GUIMainView.java 123 
TestCourtQueryObject.java 122 
FilterDecoratorTableModel.java 122 
TestManageCaseServiceSessionBeanPersistent.java 121 
CaseSearchCriteria.java 120 
ConcreteContact_9e696b51.java 120 
EJSLocalStatelessManageContactService_30df9e30.java 120 
EJSLocalStatelessElectronicFilingCredentialServic_a17b160f.java 120 
AbstractDocbookTask.java 118 
RequirementPackage.java 118 
JISMainController.java 117 
TestDataTransferObjectAdapter.java 117 
TestBrowserController.java 116 
CrtLocal.java 116 
ManageCaseServiceBean.java 115 
TestDocketEntryConverter.java 114 
ExceptionContainer.java 114 
EfilingAuthenticationServiceSoapBindingStub.java 113 
ConcreteSfc_9aca3e38.java 113 
GraphPathListSelectionModelTest.java 112 
JUnitEETask.java 112 
MainCasePanel.java 111 
EJSLocalCMPJUnitEEEntity_3580e985.java 111 
EJSLocalCMPPer_1545092a.java 111 
DeleteEntryConfirmationDialogPanel.java 110 
ListPropertyGraphNode.java 110 
DateUtils.java 110 
ListPropertyGraphNodeTest.java 109 
DateValidatorAndConvertor.java 109 
LwcBean.java 108 
DocketDetailsController.java 107 



 
 

JISArchitectureAssessment.doc             Page 87 of 145                                                   9/3/2004 
Confidential 

GraphPathEventTest.java 107 
ConcreteCtc_df1f44d1.java 107 
JXDDSchema.java 106 
BasicFilerIdentification.java 105 
PopupTableCellEditorComponent.java 104 
Contact.java 104 
DocumentRenderer.java 103 
ViewUtils.java 103 
AbstractQueryObject.java 102 
MaintainLawCommentsPanel.java 102 
MockCaseSearchMainView.java 102 
TestCaseSearchCriteria.java 101 
TestServiceClient.java 101 
CredentialServiceDelegate.java 99 
DTOXMLReaderHelper.java 99 
ChangeList.java 99 
TestAddressBookMainView.java 99 
JAutoTextField.java 98 
TestLWCEntityBean.java 97 
ManageLawServiceBean.java 96 
JISPersistentCodeValueListRepository.java 95 
GraphNodeTableModelTest.java 95 
GraphPathListSelectionModel.java 95 
AddDocketEntryAdditionalDetails.java 94 
MSProjectHtmlPublisher.java 94 
ConcretePer_1545092a.java 94 
TestDocketDetailsView.java 93 
GraphNodeCheckBoxModelTest.java 93 
EJSLocalStatelessManageCaseService_fbda508d.java 93 
DocketEntry.java 92 
TestDKTEntityBean.java 92 
DktBeanCacheEntryImpl_1ab5b17a.java 92 
DktBeanCacheEntryImpl_1ab5b17a.java 92 
EJSLocalCMPCmtHome_7e04ce8b.java 91 
EJSLocalCMPCrtHome_a975ea9a.java 91 
EJSLocalCMPLawHome_0c803c3b.java 91 
EJSLocalCMPLwcHome_41c6fec8.java 91 
EJSLocalCMPSfcHome_9aca3e38.java 91 
EJSLocalCMPCmtHome_0cb78212.java 91 
EJSLocalCMPCsHome_bbd7c1f8.java 91 
EJSLocalCMPDktHome_1ab5b17a.java 91 
EJSLocalCMPPerHome_1545092a.java 91 
PerforceInfo.java 89 
MockServiceClient.java 88 
TestCONEntityBean.java 88 
LawBean.java 88 
PersistentCredentialsRepository.java 87 



 
 

JISArchitectureAssessment.doc             Page 88 of 145                                                   9/3/2004 
Confidential 

XMLUtils.java 87 
TestUIComponentModelFactory.java 86 
GraphJoinComboBoxModelTest.java 86 
DTOContenHandlerTestHelper.java 85 
ChangeReport.java 85 
PerforceMissingFilesUtil.java 85 
DefaultIntrospectionAdapterTest.java 84 
JUnitXMLFormatter.java 84 
CourtOfLimitedJurisdictionToolsPanel.java 83 
SimplePropertyGraphNodeTest.java 83 
RequirementsPublisher.java 83 
ManageContactServiceBean.java 83 
TestCaseNumberValidation.java 83 
ExcelReleasePlan.java 82 
LawBeanInjectorImpl_3609b123.java 82 
LawBeanInjectorImpl_3609b123.java 82 
CredentialValidationRules.java 81 
CodeValue.java 81 
DocketEntryBase.java 81 
User.java 81 
DocbookHtmlTransformer.java 81 
ConcreteJUnitEEEntity_3580e985.java 80 
TestManageContactServiceSessionBean.java 80 
CaseIdentifierConverter.java 79 
TableOverlayController.java 79 
CrtBeanExtractor_a975ea9a.java 79 
DocketEntryConverter.java 78 
PersistentCourtRepository.java 78 
TestDTOFactory.java 78 
EJSCMPSfcHomeBean_9aca3e38.java 78 
XMLTransformerTest.java 77 
EJSCMPLawHomeBean_0c803c3b.java 76 
EJSLocalCMPCtc_df1f44d1.java 76 
EJSLocalCMPSfc_9aca3e38.java 76 
EJSLocalStatelessConfigurationServiceBean_09339c44.java 75 
TestManageLogEntryServiceBean.java 75 
DktBean.java 75 
CaseServiceProvider.java 74 
MainTabbedPane.java 74 
EJSCMPCmtHomeBean_7e04ce8b.java 74 
TestCodeValueDto.java 73 
TestJisMainController.java 72 
TestDateUtils.java 72 
EJSCMPCrtHomeBean_a975ea9a.java 72 
EJSCMPLwcHomeBean_41c6fec8.java 72 
LawBeanCacheEntryImpl_0c803c3b.java 72 
TestVerifyTransactionManagementSessionBean.java 72 



 
 

JISArchitectureAssessment.doc             Page 89 of 145                                                   9/3/2004 
Confidential 

EJSCMPCmtHomeBean_0cb78212.java 72 
EJSCMPCsHomeBean_bbd7c1f8.java 72 
EJSCMPDktHomeBean_1ab5b17a.java 72 
EJSCMPPerHomeBean_1545092a.java 72 
TestAllDataTransferObjectAdapters.java 71 
EJSLocalCMPJUnitEEEntityHome_3580e985.java 70 
EJSLocalCMPContactHome_9e696b51.java 70 
EJSLocalCMPCtcHome_df1f44d1.java 70 
LwcBeanInjectorImpl_41c6fec8.java 70 
EJSLocalCMPCEAHome_c6bc28a7.java 70 
EJSLocalCMPLawHome_3609b123.java 70 
LawLocal.java 70 
TestCourtConverter.java 69 
SuperiorCaseIndicator.java 69 
Credentials.java 69 
SimplePropertyGraphNode.java 68 
PDFTransformer.java 68 
LogEntryMessageSubscriber.java 67 
TestAbstractQueryObject.java 65 
StringVector.java 65 
JISSession.java 65 
JCalendarTestFrame.java 65 
LawBean.java 65 
TestPersistentCaseRepositoryForNJIS.java 65 
ReportingGatewayServlet.java 65 
AddDocketEntryPanel.java 64 
TestJISSession.java 64 
TestLAWEntityBean.java 64 
StreamServiceProviderWorker.java 63 
AppellateSuperiorToolsPanel.java 62 
MaintainLawPanel.java 62 
DuplicateCredentialsException.java 62 
TestLogEntryFactory.java 61 
TestEFilingAuthenticationService.java 61 
AbstractAttribute.java 61 
UIComponentModelFactory.java 60 
LawDto.java 60 
JIS.java 60 
ServiceClientContext.java 60 
TestCMTEntityBean.java 60 
TestFilterDocketListAcceptance.java 59 
GraphNodeListModelTest.java 59 
CrtBeanCacheEntry_a975ea9a.java 59 
LawPath.java 58 
ManageCaseBusinessDelegate.java 58 
GUILawSearchMainView.java 58 
AbstractRepositoryFactory.java 58 



 
 

JISArchitectureAssessment.doc             Page 90 of 145                                                   9/3/2004 
Confidential 

GraphPathSelectionEventTest.java 58 
DateValidatorAndConvertorTest.java 58 
LwcLocal.java 58 
CaseConverter.java 57 
TestCaseIdentifierDto.java 57 
CaseIndicator.java 57 
CljCaseIndicator.java 57 
ExpandedFilerIdentification.java 57 
DocbookPDFTransformer.java 57 
LawBeanExtractor_3609b123.java 57 
LawBeanExtractor_3609b123.java 57 
GUIDocketDetailsView.java 56 
AuthenticationResult.java 56 
CredentialUpgradeResult.java 56 
SampleDTOFactory.java 56 
TestJUnitEEEntity.java 56 
WasisJournalRecord.java 55 
ServiceClient.java 55 
KeyServiceImpl.java 55 
CaseSearchActions.java 54 
TestCSEntityBean.java 54 
DocketEntryDto.java 53 
GUILawMaintenanceMainView.java 53 
UtilityNavigationPanel.java 53 
PDFTransformerTest.java 53 
AbstractFilterPanel.java 53 
CgiParser.java 53 
CharacterConverter.java 53 
TestCEAEntityBean.java 53 
GraphNodeTableModel.java 52 
Table.java 52 
JISAuthenticationManager.java 52 
TestJISAuthenticationManager.java 52 
EJSLocalStatelessManageLawService_b76a53a7.java 52 
TestCMTEntityBean.java 52 
ManageContactBusinessDelegate.java 52 
TestServiceRequestsAndProviders.java 52 
CEABeanCacheEntryImpl_c6bc28a7.java 52 
CEABeanCacheEntryImpl_c6bc28a7.java 52 
CourtList.java 51 
LawSearchCriteria.java 51 
TestOrganizationQueryObject.java 51 
TestQueryRunner.java 51 
TestCaseDto.java 51 
DocketEntryServiceServiceLocator.java 51 
AuthenticationServiceServiceLocator.java 51 
CredentialServiceServiceLocator.java 51 



 
 

JISArchitectureAssessment.doc             Page 91 of 145                                                   9/3/2004 
Confidential 

CodeValueList.java 51 
GraphJoin.java 51 
ProgressIndicator.java 51 
ServiceLocator.java 51 
LwcBeanExtractor_41c6fec8.java 51 
TestContactDomain.java 51 
EJSCMPCtcHomeBean_df1f44d1.java 50 
JISSwingUtilities.java 49 
MaintainLawBasicPanel.java 49 
IncompleteIdentificationException.java 49 
InvalidPasswordException.java 49 
InvalidPinException.java 49 
GraphPathBoundaryTest.java 49 
FilterCriteriaRegistry.java 49 
StringUtils.java 49 
JAutoComboBox.java 49 
EJSLocalStatelessJarDependencyDemoHome_593551ae.java 49 
EJSLocalStatelessMultipleConnectionDemoHome_251eb65b.java 49 
EJSLocalStatelessVerifyTransactionManagementHome_771efcdc.java 49 
EJSLocalStatelessJUnitEEDemoHome_c4fdb533.java 49 
EJSLocalStatelessManageContactServiceHome_30df9e30.java 49 
CmtBean.java 49 
EJSLocalStatelessConfigurationServiceBeanHome_09339c44.java 49 
EJSLocalStatelessElectronicFilingCredentialServicHome_a17b160f.java 49 
EJSLocalStatelessInMemoryRepositoryInitializerHome_af30a015.java 49 
EJSLocalStatelessManageCaseServiceHome_fbda508d.java 49 
EJSLocalStatelessManageCodeValueServiceHome_21b30c36.java 49 
EJSLocalStatelessManageCourtServiceHome_bddd2e52.java 49 
EJSLocalStatelessManageLawServiceHome_b76a53a7.java 49 
EJSLocalStatelessManageLogEntryServiceHome_49a7d926.java 49 
JISApplication.java 48 
ContentHandlerProxy.java 48 
IterationPlanPublisherValidation.java 48 
Constants.java 48 
TestSFCEntityBean.java 48 
CsBean.java 48 
DktBeanInjectorImpl_1ab5b17a.java 48 
DktBeanInjectorImpl_1ab5b17a.java 48 
MainActions.java 47 
TestDocketEntry.java 47 
GraphJoinTest.java 47 
DTOXMLReader.java 47 
HTMLTransformerTest.java 47 
TestHttpTransport.java 47 
CmtBeanCacheEntryImpl_7e04ce8b.java 47 
CsBeanCacheEntryImpl_bbd7c1f8.java 47 
CsBeanCacheEntryImpl_bbd7c1f8.java 47 



 
 

JISArchitectureAssessment.doc             Page 92 of 145                                                   9/3/2004 
Confidential 

QueryRunner.java 46 
CaseHeaderPanel.java 46 
ServiceRequest.java 46 
TestChangeList.java 46 
ManageLogEntryServiceBean.java 46 
TestCaseSearchController.java 45 
GUIDialogDisplayerView.java 45 
CodeValue.java 45 
TestStackTrace.java 45 
Sample3Controller.java 45 
CmtBean.java 45 
TestNewJisMainController.java 44 
Organization.java 44 
TestWjrQueryObject.java 44 
GraphNodeButtonGroupModel.java 44 
AbstractDecoratorTableModel.java 44 
RequiredFieldLabel.java 44 
EJSCMPJUnitEEEntityHomeBean_3580e985.java 44 
EJSCMPContactHomeBean_9e696b51.java 44 
LawBeanInjectorImpl_0c803c3b.java 44 
TestPEREntityBean.java 44 
TestServiceLocator.java 44 
EJSCMPLawHomeBean_3609b123.java 44 
LawSearchItem.java 43 
MockMainView.java 43 
TestExcelProjectReleasePlan.java 43 
PopupTableCellEditor.java 43 
CaseNumberValidationRules.java 42 
MockDocketDetailsView.java 42 
LogEntry.java 42 
TestFilterCriteriaRegistry.java 42 
JISUrlInfo.java 42 
KeySelectableComboBox.java 42 
WaitGlassPane.java 42 
ContactBeanCacheEntryImpl_9e696b51.java 42 
EJSLocalStatelessJUnitEEDemo_c4fdb533.java 42 
SfcBean.java 42 
EJSLocalStatelessManageCodeValueService_21b30c36.java 42 
TestManageContactBusinessDelegate.java 42 
CmtBeanCacheEntryImpl_0cb78212.java 42 
CmtBeanCacheEntryImpl_0cb78212.java 42 
LogEntryFactory.java 41 
TestDtoFactories.java 41 
ListPropertyChangeSupport.java 41 
DayLabel.java 41 
EJSLocalStatelessManageLogEntryService_49a7d926.java 41 
TestPersistentCodeValueListRepository.java 41 



 
 

JISArchitectureAssessment.doc             Page 93 of 145                                                   9/3/2004 
Confidential 

EFilingCredentialServiceTestDataFactory.java 40 
ExecutionHandler.java 40 
TestRequirementFactory.java 40 
Utils.java 40 
TestEncryptedDocumentImpl.java 40 
ManageCodeValueServiceBean.java 40 
CrudAddressDto.java 40 
EJSCMPCEAHomeBean_c6bc28a7.java 40 
DktBeanExtractor_1ab5b17a.java 40 
DktBeanExtractor_1ab5b17a.java 40 
DocketCode.java 39 
DateTextFieldDocument.java 39 
ComplexType.java 39 
TraversableTable.java 39 
ConfigurationServiceBeanBean.java 39 
LoginProvider.java 38 
CaseSearchMainView.java 38 
GUIViewFactory.java 38 
TestRepositoryFactoryBuilder.java 38 
TestExcelReleasePlan.java 38 
LawBeanExtractor_0c803c3b.java 38 
WebServiceProxy.java 38 
CEABean.java 38 
OrganizationQueryObject.java 37 
SuperiorCase.java 37 
GraphPathInitializationOrderTest.java 37 
TestListAttribute.java 37 
ContainerStreamHandler.java 37 
TestExcelIterationPlan.java 37 
ProgressBarComponent.java 37 
VerifyTransactionManagementBean.java 37 
LawBeanCacheEntry_3609b123.java 37 
Court.java 36 
ViewFactory.java 36 
RepositoryFactoryBuilder.java 36 
TestTextLengthValidator.java 36 
DTOTransformer.java 36 
ServiceEvent.java 36 
EditStateDecoratorTableModel.java 36 
JISProperties.java 36 
TestDB2DDLConverter.java 36 
TestStringUtils.java 36 
TestUtils.java 36 
DktLocal.java 36 
TestCaseConverter.java 35 
PersistentCaseRepositoryUtil.java 35 
WjrQueryObject.java 35 



 
 

JISArchitectureAssessment.doc             Page 94 of 145                                                   9/3/2004 
Confidential 

CaseIdentifierDto.java 35 
MockViewFactory.java 35 
AuthenticationServiceDelegate.java 35 
CaseNotFoundSOAPException.java 35 
DocketEntryNotFoundSOAPException.java 35 
FieldsValidationSOAPException.java 35 
InvalidCaseIdentifierSOAPException.java 35 
MultipleCasesFoundSOAPException.java 35 
GraphJoinComboBoxModel.java 35 
TestCrudAddressList.java 35 
ContactBean.java 34 
Sample2Controller.java 34 
Sample2Controller.java 34 
DocketCodeList.java 33 
AppelleteCaseIndicator.java 33 
CaseIndicatorBase.java 33 
MessagePublisher.java 33 
ReportingGatewayClient.java 33 
LocalServiceProviderRequestor.java 33 
PropertiesManager.java 33 
TestRequirementPackage.java 33 
VisionDocument.java 33 
TestSignedDocumentImpl.java 33 
MultipleConnectionDemoBean.java 33 
CtcBean.java 33 
WebServiceXMLDocument.java 33 
PerBean.java 33 
BasicPersonalIdentifyingInformation.java 32 
AddDocketEntryOKCancel.java 32 
CmtBeanExtractor_7e04ce8b.java 32 
CmtBeanInjectorImpl_7e04ce8b.java 32 
CtcBeanCacheEntryImpl_df1f44d1.java 32 
SfcBeanCacheEntryImpl_9aca3e38.java 32 
TestManageCaseBusinessDelegate.java 32 
CEABeanExtractor_c6bc28a7.java 32 
CEABeanInjectorImpl_c6bc28a7.java 32 
CEABeanExtractor_c6bc28a7.java 32 
CEABeanInjectorImpl_c6bc28a7.java 32 
DialogDisplayerController.java 31 
ManageCaseBusinessDelegate.java 31 
CodeValueDto.java 31 
TestDocketActionDateRule.java 31 
EditorDocument.java 31 
SortableTableColumnModel.java 31 
TestPropertiesManager.java 31 
RootRequirementPackage.java 31 
FlatButton.java 31 



 
 

JISArchitectureAssessment.doc             Page 95 of 145                                                   9/3/2004 
Confidential 

CtcBeanExtractor_df1f44d1.java 31 
SfcBeanExtractor_9aca3e38.java 31 
LwcBeanCacheEntry_41c6fec8.java 31 
CsBeanExtractor_bbd7c1f8.java 31 
CsBeanExtractor_bbd7c1f8.java 31 
AcceptanceTestCase.java 30 
UserConverter.java 30 
Case.java 30 
LawSearchServiceProvider.java 30 
GraphSelectionEvent.java 30 
TestImmutableRule.java 30 
MessageSubscriber.java 30 
DecoratorTableModelFactory.java 30 
RawComplexType.java 30 
ContactBeanExtractor_9e696b51.java 30 
CtcBeanInjectorImpl_df1f44d1.java 30 
SfcBeanInjectorImpl_9aca3e38.java 30 
TestWebService.java 30 
Test2JUnitEEDemo.java 30 
CmtBeanExtractor_0cb78212.java 30 
CsBeanInjectorImpl_bbd7c1f8.java 30 
CmtBeanExtractor_0cb78212.java 30 
CsBeanInjectorImpl_bbd7c1f8.java 30 
PersistentLogEntryRepository.java 29 
ContainerException.java 29 
EJSLocalStatelessVerifyTransactionManagement_771efcdc.java 29 
EJSLocalStatelessManageCourtService_bddd2e52.java 29 
Sample3View.java 29 
TestManageCodeValueServiceSessionBean.java 29 
DocketEntryPath.java 28 
BusinessDelegateFactory.java 28 
ContainerRuntimeException.java 28 
LookupTable.java 28 
ExcelProjectReleasePlan.java 28 
RequirementTypes.java 28 
ContactBeanInjectorImpl_9e696b51.java 28 
ManageCourtServiceBean.java 28 
TestManageCourtServiceSessionBean.java 28 
HttpServiceProviderContainerServlet.java 28 
CmtBeanInjectorImpl_0cb78212.java 28 
CmtBeanInjectorImpl_0cb78212.java 28 
DtoFactoryFactory.java 27 
AuthorizationLevelValues.java 27 
CodeValueListDto.java 27 
IntrospectionAdapter.java 27 
ReportType.java 27 
HttpServiceProviderRequestor.java 27 



 
 

JISArchitectureAssessment.doc             Page 96 of 145                                                   9/3/2004 
Confidential 

EditorDocumentTest.java 27 
GraphNodeListModel.java 27 
AbstractWorkerRunner.java 27 
TestJUnitEEDemo.java 27 
JISCodeValueServiceProvider.java 26 
TestTable.java 26 
DataTypeConvertor.java 26 
AbstractType.java 26 
JNDILocalEJBConstants.java 26 
X509CertificateInfoImpl.java 26 
PerBeanExtractor_1545092a.java 26 
PerBeanExtractor_1545092a.java 26 
MockServiceClientContext.java 25 
InMemoryLogEntryRepository.java 25 
DTOXMLReaderTest.java 25 
HTMLTransformer.java 25 
LogEntryMessageHandler.java 25 
LocalServiceProviderContainerServer.java 25 
GraphNodeCheckBoxModel.java 25 
HistoryEntry.java 25 
JUnitEEEntityBeanExtractor_3580e985.java 25 
EJSStatelessJarDependencyDemoHomeBean_593551ae.java 25 
EJSStatelessMultipleConnectionDemoHomeBean_251eb65b.java 25 
EJSStatelessVerifyTransactionManagementHomeBean_771efcdc.java 25 
EJSStatelessJUnitEEDemoHomeBean_c4fdb533.java 25 
EJSStatelessManageContactServiceHomeBean_30df9e30.java 25 
EJSStatelessConfigurationServiceBeanHomeBean_09339c44.java 25 
EJSStatelessElectronicFilingCredentialServicHomeBean_a17b160f.java 25 
EJSStatelessInMemoryRepositoryInitializerHomeBean_af30a015.java 25 
EJSStatelessManageCaseServiceHomeBean_fbda508d.java 25 
EJSStatelessManageCodeValueServiceHomeBean_21b30c36.java 25 
EJSStatelessManageCourtServiceHomeBean_bddd2e52.java 25 
EJSStatelessManageLawServiceHomeBean_b76a53a7.java 25 
EJSStatelessManageLogEntryServiceHomeBean_49a7d926.java 25 
ContactServiceGetContactsProvider.java 25 
TestFrame.java 25 
TestPersistentCourtRepository.java 25 
ShowDocketDetailsAcceptanceTest.java 24 
AbstractControllerTestCase.java 24 
CourtConverter.java 24 
DocketEntryListConverter.java 24 
CourtQueryObject.java 24 
TestUserDto.java 24 
MaintainLawDetailPanel.java 24 
JISTanTheme.java 24 
PersistentCodeValueListRepository.java 24 
JISDataValidationException.java 24 



 
 

JISArchitectureAssessment.doc             Page 97 of 145                                                   9/3/2004 
Confidential 

AbstractServiceProvider.java 24 
TextFilterPanel.java 24 
TestJISAuthenticationManagerWithInvalidUrls.java 24 
ChainedRuntimeException.java 24 
JUnitEEEntityBean.java 24 
LawLocal.java 24 
Sample3Frame.java 24 
Sample1Frame.java 24 
Sample2Frame.java 24 
Sample2Frame.java 24 
Sample2View.java 24 
ClientRequestType.java 23 
LawMaintenanceController.java 23 
CodeValueConverter.java 23 
Credentials.java 23 
Person.java 23 
TestDialogDisplayerView.java 23 
ListAttribute.java 23 
PDFReportGenerator.java 23 
ReportingGateway.java 23 
EditingCompleteInputVerifier.java 23 
URLDecoder.java 23 
JISLogin.java 23 
AutoComboBoxEditor.java 23 
EJSLocalStatelessJarDependencyDemo_593551ae.java 23 
EJSLocalStatelessMultipleConnectionDemo_251eb65b.java 23 
EJSLocalStatelessInMemoryRepositoryInitializer_af30a015.java 23 
AddressBookMainView.java 23 
HelpAction.java 23 
TestDomainFactory.java 23 
ContactServiceAddProvider.java 23 
ContactServiceDeleteProvider.java 23 
JisSubscriberMain.java 23 
DialogDisplayerActions.java 22 
User.java 22 
DocketDetailsView.java 22 
TestReportingGateway.java 22 
AbstractFilterCriterion.java 22 
TestSuitePackage.java 22 
TextField.java 22 
JUnitEEDemoBean.java 22 
CmtKey.java 22 
PerBeanCacheEntryImpl_1545092a.java 22 
PerBeanCacheEntryImpl_1545092a.java 22 
TestLawSearchMainView.java 21 
DataTransferObjectType.java 21 
IntrospectionAdapterBuilder.java 21 



 
 

JISArchitectureAssessment.doc             Page 98 of 145                                                   9/3/2004 
Confidential 

TestSuitePackage.java 21 
BorderlessTextField.java 21 
TestAbstractDecoratorTableModel.java 21 
TestJISProperties.java 21 
XMLSecurityFactoryImpl.java 21 
TestDialogDisplayerController.java 20 
TestSuitePackage.java 20 
LawMaintenanceServiceProvider.java 20 
TestPresentOrFutureDateRule.java 20 
TestPresentOrPastDateRule.java 20 
HTMLReportGenerator.java 20 
ServiceEventListenerType.java 20 
DateField.java 20 
TestSuitePackage.java 20 
TestXMLUtils.java 20 
CtcKey.java 20 
SfcKey.java 20 
AddressBookControllerFactory.java 20 
ContactServiceEditProvider.java 20 
TestSuiteWebPackage.java 20 
CEALocal.java 20 
PerBeanInjectorImpl_1545092a.java 20 
PerBeanInjectorImpl_1545092a.java 20 
DktBeanCacheEntry_1ab5b17a.java 20 
TestControllerInit.java 19 
TestBasicFilerIdentificationDto.java 19 
MainView.java 19 
AddressDto.java 19 
TextArea.java 19 
LwcKey.java 19 
AbstractServletTestCase.java 18 
BasicFilerIdentificationPath.java 18 
CaseIdentifierPath.java 18 
MainModelListener.java 18 
RepositoryFactory.java 18 
ImmutableRule.java 18 
SingleAttribute.java 18 
TestDocumentRenderer.java 18 
TestTableOverlayController.java 18 
JUnitEEEntityBeanInjectorImpl_3580e985.java 18 
ContactLocal.java 18 
LawKey.java 18 
ClientRequestType.java 18 
CrudAddressTest.java 18 
TestLegacyTokenIdentier.java 18 
CsLocal.java 18 
BasicFilerIdentificationDto.java 17 



 
 

JISArchitectureAssessment.doc             Page 99 of 145                                                   9/3/2004 
Confidential 

Attribute.java 17 
DocketActionDateRule.java 17 
TestPersonDto.java 17 
XMLTransformer.java 17 
ExceptionContainerFactory.java 17 
CompositeInputVerifier.java 17 
TestCharacterConverter.java 17 
JUnitEEEntityBeanCacheEntryImpl_3580e985.java 17 
Sample1Controller.java 17 
CrudAddressPath.java 17 
TestSuiteWebPackage.java 17 
TestSuiteWebPackage.java 17 
TestConfigurationSessionBean.java 17 
LawSearchActions.java 16 
LawSearchController.java 16 
Paths.java 16 
LegacyTokenIdentifier.java 16 
JISUIConfig.java 16 
CodeValueListRepository.java 16 
IllegalPathException.java 16 
ListPropertyGraphNodeEvent.java 16 
AddressPath.java 16 
ReportGeneratorFactory.java 16 
AbstractServiceProviderRequestor.java 16 
EditStateDecoratorModelTest.java 16 
BooleanFilterCriterionTest.java 16 
IntegerFilterCriterionTest.java 16 
StringFilterCriterionTest.java 16 
PropertyElement.java 16 
EnsureNoUnaddedWorkspaceFiles.java 16 
DefinedRequirementType.java 16 
EncryptedDocumentImpl.java 16 
CmtLocal.java 16 
LawBeanCacheEntry_0c803c3b.java 16 
RepositoryGenerator.java 16 
CmtLocal.java 16 
JISServiceClientContext.java 15 
CaseIdentifierListConverter.java 15 
JISCodeValueListRepository.java 15 
TestCodeValueList.java 15 
TestHTMLReportGenerator.java 15 
ServiceProviderContext.java 15 
ServiceProviderContainerContext.java 15 
SessionType.java 15 
TestSuitePackage.java 15 
ToDo.java 15 
AbstractPopupEditorComponent.java 15 



 
 

JISArchitectureAssessment.doc             Page 100 of 145                                                   9/3/2004 
Confidential 

SignedDocumentImpl.java 15 
XEPFORenderer.java 15 
InMemoryRepositoryInitializerBean.java 15 
TestJarDependencySessionBean.java 15 
TestMultipleConnectionSessionBean.java 15 
AbstractRepositoryTestCase.java 15 
TestSuiteWebPackage.java 15 
AbstractConverterTestCase.java 14 
AbstractCase.java 14 
CaseDto.java 14 
CourtDto.java 14 
TestSuitePackage.java 14 
MainModel.java 14 
TestSuitePackage.java 14 
ListEventConstants.java 14 
PresentOrPastDateRule.java 14 
PersonDto.java 14 
TestAddressListDto.java 14 
SimpleType.java 14 
JUnitEEEntityKey.java 14 
ContactKey.java 14 
JarDependencyDemoBean.java 14 
CrtKey.java 14 
Sample2Panel.java 14 
CmtKey.java 14 
CsKey.java 14 
DktKey.java 14 
LawKey.java 14 
PerKey.java 14 
Comment.java 13 
LegacyCase.java 13 
CaseRepository.java 13 
AuthenticationResultInformationDto.java 13 
CredentialsDto.java 13 
CredentialUpgradeResultInformationDto.java 13 
LawSearchMainView.java 13 
IntegerIdentifier.java 13 
AttributeValidationRuleTestCase.java 13 
NodeValuePresentationConverter.java 13 
ListPropertyStateEvent.java 13 
PresentOrFutureDateRule.java 13 
AddressListDto.java 13 
CommentDto.java 13 
TestSuitePackage.java 13 
TestPDFReportGenerator.java 13 
ServiceEventEnvelope.java 13 
ServiceRequestEnvelope.java 13 



 
 

JISArchitectureAssessment.doc             Page 101 of 145                                                   9/3/2004 
Confidential 

BooleanFilterCriterion.java 13 
ChainedException.java 13 
StreamPair.java 13 
XMLSecurityFactory.java 13 
Sample2View.java 13 
EditAction.java 13 
NewAction.java 13 
CrudAddressListDto.java 13 
TestIntegerIdentifier.java 13 
TestSuiteWebPackage.java 13 
TestCodeValueConverter.java 12 
TestUserConverter.java 12 
AbstractEntity.java 12 
AuthorizationLevelTypes.java 12 
DialogDisplayerValues.java 12 
ExpandedPersonalIdentifyingInformation.java 12 
DocketEntryListDto.java 12 
TestCredentialsDto.java 12 
UserDto.java 12 
UserPath.java 12 
ManageCaseBusinessDelegateClient.java 12 
CodeValuePath.java 12 
PersonPath.java 12 
TestRequiredRule.java 12 
TestStringLengthNonZeroRule.java 12 
TestSuitePackage.java 12 
IntegerFilterCriterion.java 12 
StringFilterCriterion.java 12 
PropertyElementInstance.java 12 
RawElement.java 12 
LocaleStrings.java 12 
CancelAction.java 12 
DeleteAction.java 12 
SaveAction.java 12 
TestSuiteWebPackage.java 12 
TestSuiteWebPackage.java 12 
CEABeanCacheEntry_c6bc28a7.java 12 
AddUpdateDocketAcceptanceTest.java 11 
LawSearchAction.java 11 
CaseDtoFactory.java 11 
CaseListDto.java 11 
CodeValueDtoFactory.java 11 
CourtDtoFactory.java 11 
CourtPath.java 11 
CredentialsPath.java 11 
DocketEntryDtoFactory.java 11 
TestCaseListDto.java 11 



 
 

JISArchitectureAssessment.doc             Page 102 of 145                                                   9/3/2004 
Confidential 

TestLawSearchDto.java 11 
UserDtoFactory.java 11 
CaseDocketServiceRequest.java 11 
CaseListServiceRequest.java 11 
CaseSaveServiceRequest.java 11 
CaseServiceRequest.java 11 
LawSearchServiceRequest.java 11 
TextLengthValidator.java 11 
TestMaximumStringLengthRule.java 11 
DTOInputSource.java 11 
HTMLGenerationException.java 11 
PDFGenerationException.java 11 
XMLFOTranslationException.java 11 
XMLBindingException.java 11 
MockBusinessDelegate.java 11 
ClientInitRequest.java 11 
TestSuitePackage.java 11 
ThreadSafeRunner.java 11 
RangeSimpleType.java 11 
AbstractRequirementsTestCase.java 11 
XMLSecurityService.java 11 
CmtBeanCacheEntry_7e04ce8b.java 11 
Sample1View.java 11 
ContactServiceAddRequest.java 11 
ContactServiceDeleteRequest.java 11 
ContactServiceEditRequest.java 11 
TestSuiteWebPackage.java 11 
AbstractContainerTestCase.java 11 
CsBeanCacheEntry_bbd7c1f8.java 11 
ServletTestSuitePackage.java 10 
TestSuitePackage.java 10 
TestSuitePackage.java 10 
QueryObjectImpl.java 10 
LawRepository.java 10 
CasePath.java 10 
ExpandedFilerIdentificationDto.java 10 
ExpandedFilerIdentificationPath.java 10 
TestExpandedFilerIdentificationDto.java 10 
CaseDocketServiceEvent.java 10 
CaseListServiceEvent.java 10 
CaseSaveServiceEvent.java 10 
CaseServiceEvent.java 10 
LawMaintenanceServiceRequest.java 10 
LoginServiceRequest.java 10 
InMemoryRepositoryInitializationProvider.java 10 
TestGUICaseSearchMainView.java 10 
TestJISUIConfig.java 10 



 
 

JISArchitectureAssessment.doc             Page 103 of 145                                                   9/3/2004 
Confidential 

TestSuitePackage.java 10 
DocketEntryServiceBindingImpl.java 10 
ChildObjectGraphNode.java 10 
MaximumStringLengthRule.java 10 
CommentPath.java 10 
BusinessDelegateException.java 10 
TestReportClient.java 10 
TestTableModelListener.java 10 
TestSuitePackage.java 10 
ContactBeanCacheEntry_9e696b51.java 10 
Sample3Action.java 10 
Sample1Action.java 10 
Sample2Action.java 10 
Sample2Action.java 10 
TestSuiteWebPackage.java 10 
TestSuiteWebPackage.java 10 
CmtBeanCacheEntry_0cb78212.java 10 
DocketDetailsActions.java 9 
MutableBoolean.java 9 
AppellateCase.java 9 
CLJCivilCase.java 9 
CLJNonCivilCase.java 9 
JISCodeValueList.java 9 
CourtRepository.java 9 
TestSuitePackage.java 9 
CaseIdentifierListDto.java 9 
CaseIdentifierListPath.java 9 
CaseListPath.java 9 
CourtListDto.java 9 
CourtListPath.java 9 
DocketEntryListPath.java 9 
LawSearchDto.java 9 
LawSearchPath.java 9 
TestCourtListDto.java 9 
ServletTestSuitePackage.java 9 
DialogDisplayer.java 9 
CodeValueListPath.java 9 
TestSuitePackage.java 9 
GraphNode.java 9 
AddressListPath.java 9 
TestSuitePackage.java 9 
ReportGenerationException.java 9 
ServiceRequestException.java 9 
TestSuitePackage.java 9 
TestSuitePackage.java 9 
TestSuitePackage.java 9 
TestLocalTransport.java 9 



 
 

JISArchitectureAssessment.doc             Page 104 of 145                                                   9/3/2004 
Confidential 

TestSuitePackage.java 9 
ClientInitProvider.java 9 
TestSuitePackage.java 9 
FilterCriterion.java 9 
JISAuthenticationException.java 9 
NativeType.java 9 
TestSuitePackage.java 9 
KeyService.java 9 
TestSuitePackage.java 9 
XMLSecurityException.java 9 
ManageContactServiceLocal.java 9 
ElectronicFilingCredentialServicesBeanLocal.java 9 
Constants.java 9 
CrudAddressListPath.java 9 
TestSuitePackage.java 8 
EfilingCredentialServiceSoapBindingImpl.java 8 
ServletTestSuitePackage.java 8 
LogEntryRepository.java 8 
TestCommentDTO.java 8 
BusinessDelegate.java 8 
DataValidationErrorServiceEvent.java 8 
ServiceProviderRequestType.java 8 
JISAuthenticationCancelledException.java 8 
JISAuthenticationFailedException.java 8 
JISNoSessionException.java 8 
JISSessionException.java 8 
EnumerationSimpleType.java 8 
XMLDecryptException.java 8 
TestSuitePackage.java 8 
JUnitEEEntityLocal.java 8 
CtcBeanCacheEntry_df1f44d1.java 8 
SfcBeanCacheEntry_9aca3e38.java 8 
ManageCaseServiceLocal.java 8 
TestSuiteWebPackage.java 8 
TestSuiteWebPackage.java 8 
TestSuiteWebPackage.java 8 
PerLocal.java 8 
ServletTestSuitePackage.java 7 
CLJCase.java 7 
LawEnforcementAgency.java 7 
TestSuitePackage.java 7 
CredentialsRepository.java 7 
GetOneIntQueryResultHandler.java 7 
TestSuitePackage.java 7 
PropertyKey.java 7 
JISCodeValueServiceEvent.java 7 
LawMaintenanceServiceEvent.java 7 



 
 

JISArchitectureAssessment.doc             Page 105 of 145                                                   9/3/2004 
Confidential 

LawSearchServiceEvent.java 7 
InMemoryRepositoryInitializationEvent.java 7 
TestLawMaintenanceMainView.java 7 
TestSuiteWebPackage.java 7 
TestSuiteWebPackage.java 7 
RepositoryFactoryNotFoundException.java 7 
TestSuitePackage.java 7 
NodeValueValidator.java 7 
TestSuitePackage.java 7 
StringLengthNonZeroRule.java 7 
ImpossibleToSatisfyRule.java 7 
TestSuitePackage.java 7 
TestSuitePackage.java 7 
TestSuitePackage.java 7 
ServletTestSuitePackage.java 7 
LocalServiceProviderContainer.java 7 
ClientDestroyProvider.java 7 
InputValidationErrorHandler.java 7 
TestSuitePackage.java 7 
SwingRunner.java 7 
TestSuitePackage.java 7 
TestSuitePackage.java 7 
TestSuitePackage.java 7 
TestSuitePackage.java 7 
GlassPaneContainerFrame.java 7 
CertificateInfo.java 7 
ManageLogEntryServiceLocal.java 7 
DemoMessageService.java 7 
TestSuitePackage.java 7 
WebServiceProxyException.java 7 
ServletTestSuitePackage.java 7 
TestSuitePackage.java 7 
TestSuitePackage.java 7 
ContactServiceEvent.java 7 
TestSuitePackage.java 7 
TestSuiteWebPackage.java 7 
TestSuiteWebPackage.java 7 
HttpServiceProviderContainer.java 7 
TestSuiteWebPackage.java 7 
TestSuiteWebPackage.java 7 
TestSuitePackage.java 6 
TestCourt.java 6 
InMemoryRepositoryInitializationRequest.java 6 
TestManageCaseBusinessDelegateClient.java 6 
LawMaintenanceMainView.java 6 
CaseNotFoundException.java 6 
CaseSearchException.java 6 



 
 

JISArchitectureAssessment.doc             Page 106 of 145                                                   9/3/2004 
Confidential 

DocketEntryNotFoundException.java 6 
MultipleCasesFoundException.java 6 
RepositoryFailureException.java 6 
DtoStateConstants.java 6 
NodeValidationException.java 6 
CoreJavaTypePath.java 6 
RequiredRule.java 6 
SimplePropertyObservable.java 6 
JISRuntimeException.java 6 
ReportGenerator.java 6 
JISLoginInfo.java 6 
RequirementType.java 6 
FORenderer.java 6 
SignedDocument.java 6 
CtcLocal.java 6 
SfcLocal.java 6 
ConfigurationServiceBeanLocal.java 6 
ManageLawServiceLocal.java 6 
PerBeanCacheEntry_1545092a.java 6 
JISDocketActionCodesServiceRequest.java 5 
JISDocketCodesServiceRequest.java 5 
CaseBusinessDelegateParameters.java 5 
DocketEntryServiceService.java 5 
AuthenticationServiceService.java 5 
CredentialService.java 5 
CredentialServiceService.java 5 
WebServicesUrls.java 5 
InMemoryRepositoryFactory.java 5 
PersistentRepositoryFactory.java 5 
AttributeValidationRule.java 5 
SimplePropertyGraphNodeEvent.java 5 
NoSuchAttributeException.java 5 
CookieParser.java 5 
Type.java 5 
TypeCreationListener.java 5 
GlassPaneContainerType.java 5 
EncryptedDocument.java 5 
JUnitEEEntityBeanCacheEntry_3580e985.java 5 
CmtLocalHome.java 5 
CrtLocalHome.java 5 
LawLocalHome.java 5 
LwcLocalHome.java 5 
SfcLocalHome.java 5 
ManageCodeValueServiceLocal.java 5 
UpcaseNodeValuePresentationConverter.java 5 
ContactServiceGetContactsRequest.java 5 
CmtLocalHome.java 5 



 
 

JISArchitectureAssessment.doc             Page 107 of 145                                                   9/3/2004 
Confidential 

CsLocalHome.java 5 
DktLocalHome.java 5 
PerLocalHome.java 5 
LawQueries.java 4 
PreparedQueryParameters.java 4 
QueryResultHandler.java 4 
DtoFactory.java 4 
DuplicateCredentialsException.java 4 
IncompleteIdentificationException.java 4 
InvalidLogonIdException.java 4 
InvalidPasswordException.java 4 
InvalidPinException.java 4 
DocketEntryService.java 4 
EfilingAuthenticationServiceSoapBindingImpl.java 4 
AggregateRoot.java 4 
GraphSelectionEventListener.java 4 
ListPropertyObservable.java 4 
BooleanPath.java 4 
DatePath.java 4 
FloatPath.java 4 
IntegerIdentifierPath.java 4 
IntegerPath.java 4 
StringPath.java 4 
NullOutputStream.java 4 
TransformationConfigurationException.java 4 
Validateable.java 4 
EditorView.java 4 
RowTranslator.java 4 
Condition.java 4 
JNDIDataSourceConstants.java 4 
AbstractAction.java 4 
JUnitEEEntityLocalHome.java 4 
ContactLocalHome.java 4 
JUnitEEDemo.java 4 
CtcLocalHome.java 4 
ManageCourtServiceLocal.java 4 
GuiFactory.java 4 
CEALocalHome.java 4 
LawLocalHome.java 4 
JISSessionConstants.java 3 
TableName.java 3 
AuthenticationService.java 3 
Identifier.java 3 
Repository.java 3 
ListPropertyGraphNodeListener.java 3 
SimplePropertyGraphNodeListener.java 3 
ListPropertyStateListener.java 3 



 
 

JISArchitectureAssessment.doc             Page 108 of 145                                                   9/3/2004 
Confidential 

MessageJNDIConstants.java 3 
HttpTransportConstants.java 3 
Editor.java 3 
FilterRegistryChangeListener.java 3 
TableName.java 3 
WorkerType.java 3 
Constants.java 3 
NameType.java 3 
GlassPaneContainerApplet.java 3 
GlassPaneContainerDialog.java 3 
JarDependencyDemoLocal.java 3 
JarDependencyDemoLocalHome.java 3 
JUnitEEDemoHome.java 3 
MultipleConnectionDemoLocal.java 3 
MultipleConnectionDemoLocalHome.java 3 
VerifyTransactionManagementLocal.java 3 
VerifyTransactionManagementLocalHome.java 3 
ManageContactServiceLocalHome.java 3 
ConfigurationServiceBeanLocalHome.java 3 
ElectronicFilingCredentialServicesBeanLocalHome.java 3 
InMemoryRepositoryInitializerLocal.java 3 
InMemoryRepositoryInitializerLocalHome.java 3 
ManageCaseServiceLocalHome.java 3 
ManageCodeValueServiceLocalHome.java 3 
ManageCourtServiceLocalHome.java 3 
ManageLawServiceLocalHome.java 3 
ManageLogEntryServiceLocalHome.java 3 
Main.java 2 
UndefinedRequirementType.java 2 
JUnitEEEntityBeanInjector_3580e985.java 2 
JUnitEEEntityBeanInternalHome_3580e985.java 2 
JUnitEEEntityBeanInternalLocalHome_3580e985.java 2 
ContactBeanInjector_9e696b51.java 2 
ContactBeanInternalHome_9e696b51.java 2 
ContactBeanInternalLocalHome_9e696b51.java 2 
CmtBeanInjector_7e04ce8b.java 2 
CmtBeanInternalHome_7e04ce8b.java 2 
CmtBeanInternalLocalHome_7e04ce8b.java 2 
CrtBeanInjector_a975ea9a.java 2 
CrtBeanInternalHome_a975ea9a.java 2 
CrtBeanInternalLocalHome_a975ea9a.java 2 
CtcBeanInjector_df1f44d1.java 2 
CtcBeanInternalHome_df1f44d1.java 2 
CtcBeanInternalLocalHome_df1f44d1.java 2 
LawBeanInjector_0c803c3b.java 2 
LawBeanInternalHome_0c803c3b.java 2 
LawBeanInternalLocalHome_0c803c3b.java 2 



 
 

JISArchitectureAssessment.doc             Page 109 of 145                                                   9/3/2004 
Confidential 

LwcBeanInjector_41c6fec8.java 2 
LwcBeanInternalHome_41c6fec8.java 2 
LwcBeanInternalLocalHome_41c6fec8.java 2 
SfcBeanInjector_9aca3e38.java 2 
SfcBeanInternalHome_9aca3e38.java 2 
SfcBeanInternalLocalHome_9aca3e38.java 2 
CEABeanInjector_c6bc28a7.java 2 
CEABeanInternalHome_c6bc28a7.java 2 
CEABeanInternalLocalHome_c6bc28a7.java 2 
CmtBeanInjector_0cb78212.java 2 
CmtBeanInternalHome_0cb78212.java 2 
CmtBeanInternalLocalHome_0cb78212.java 2 
CsBeanInjector_bbd7c1f8.java 2 
CsBeanInternalHome_bbd7c1f8.java 2 
CsBeanInternalLocalHome_bbd7c1f8.java 2 
DktBeanInjector_1ab5b17a.java 2 
DktBeanInternalHome_1ab5b17a.java 2 
DktBeanInternalLocalHome_1ab5b17a.java 2 
LawBeanInjector_3609b123.java 2 
LawBeanInternalHome_3609b123.java 2 
LawBeanInternalLocalHome_3609b123.java 2 
PerBeanInjector_1545092a.java 2 
PerBeanInternalHome_1545092a.java 2 
PerBeanInternalLocalHome_1545092a.java 2 
DataTransferObjectTranslator.java 0 
TOTAL 
 73522 
FILE COUNT 
 1237 

 



 
 

JISArchitectureAssessment.doc             Page 110 of 145                                                   9/3/2004 
Confidential 

APPENDIX D: ARCHITECTURAL COMPONENT 
COMPARISON 
 
JIS 
 
Purpose Tool Current Version (Date) 
Java Development Websphere Studio 

Application Developer 
(WSAD) 

5.1.0.1 (10/1/2003) 

Builds Jakarta Ant 1.5.4 (10/1/2003) 
Source Control Perforce 2003.1 48707 (12/16/2003) 
Java Development (J2SE) 
Environment 

Java 2 Standard Edition 
from Sun 
(J2SDK) 

1.4.2 (12/16/2003) 

Java Development (J2EE) 
Environment 

Java 2 Enterprise Edition 
from Sun(J2EESDK) 

1.?.2 (12/16/2003) 

Unit Test JUnit, JUnitEE  
Database DB2 on OS/390  
Application Server IBM WebSphere 

Application Server 
5.1 

 
 
ACORDS  
 
Purpose Tool Current Version (Date) 
Java Development Websphere Studio 

Application Developer 
(WSAD) 

5.1.0.1 

Builds Jakarta Ant 1.5.4 
Source Control Perforce 2003.1 48707 
Java Development 
(J2SE) Environment 

Java 2 Standard Edition 
from Sun 
(J2SDK) 

1.3.1 

Java Development 
(J2EE) Environment 

Java 2 Enterprise Edition 
from Sun(J2EESDK) 

 

Unit Test JUnit, ROBOT testsuite  
Database IBM DB2 on OS/390 7.2 
Application Server IBM WebSphere 

Application Server 
5.1 

 
 



 
 

JISArchitectureAssessment.doc             Page 111 of 145                                                   9/3/2004 
Confidential 

CAPS  
 
Purpose Tool Current Version (Date) 
Java Development Websphere Studio 

Application Developer 
(WSAD) 

 

Builds Jakarta Ant 1.5.4 
Source Control Perforce 2003.1 48707 
Java Development 
(J2SE) Environment 

Java 2 Standard Edition 
from Sun 
(J2SDK) 

1.4.2 

Java Development 
(J2EE) Environment 

Java 2 Enterprise Edition 
from Sun(J2EESDK) 

 

Unit Test JUnit,   
Database IBM DB2 on OS/390 7.2 
Application Server IBM WebSphere 

Application Server 
 

 
 
Stored Procedures used  
 
Application Stored Procedure Name Purpose 

JXSPSMF Log Entry 
SP0005SX 

ACORDS 

JXSPTK 
Token Generation 

EE_RECURRENCE 
EE_UNAVAILABILITY 
EE_NEW_RCU 
EE_RCUINS 
EE_RCUCALC 
EE_RCUCALC2 

CAPS 

EE_UNAVCALC 

Recurrence Calculation 

 
 
Count of Artifacts  
 
Application Total Java Files Entity Beans Session Beans JSP 
ACORDS 1064 

(128747 SLOC) 
67 19 77  

(9971 SLOC) 
CAPS 526 

(58710 SLOC) 
8 18 120  

(12897 SLOC) 
 
SLOC = Source Lines of Code, i.e. actual code, excludes white space, comments, formatting etc. 



 
 

JISArchitectureAssessment.doc             Page 112 of 145                                                   9/3/2004 
Confidential 

Comparative Analysis  
 
Description ACORDS CAPS 
User Interface  Swing based applet. 

Limited JSP Pages (not using 
any framework) 

JSP pages. 

Service Layer Extra RMI Layer, and then 
Session Façade 

Servlet calls over HTTP to 
session façade  

Client Architecture Home grown framework for 
Swing 

Home grown framework 
similar to STRUTS. 

JDK 1.4 compatible No Yes 
Separation of Model / View / 
Controller 

No.  Yes. 

Remote EJB’s Yes Yes 
Session Beans Stateless  (Total=19) Stateless (Total=18) 
Entity Beans Fine grained Container 

Managed Persistence (CMP) 
(Total=67) 

Coarse grained Bean Managed 
Persistence (BMP)  
(Total=8) 

Data Access • Straight SQL calls 
from Session beans to 
DB for reads. 

• CMPs used for 
insert/update/delete 

QueryEngine classes which 
are one per session bean. They 
have the persistent logic. 

DB Access Uses non-standard 
“Connection” classes  in 
addition to the “datasource” 
provided by the WebSphere 
container 

Strictly uses “datasource” of 
the container. 

J2EE compliance • Data Objects do not have 
clone(), toString(), and 
hashCode() methods. 

Adhere to standards. 

Database DB2 on OS390 DB2 on OS390 
Stored Procedures JXSPSMF 

SP0005SX 
JXSPTK 
 
Used for Token Generation 
and Log Entry. 

EE_RECURRENCE 
EE_UNAVAILABILITY 
EE_NEW_RCU 
EE_RCUINS 
EE_RCUCALC 
EE_RCUCALC2 
EE_UNAVCALC 
 
Used for Recurrence 
Calculation. 

 Repeatable_read Repeatable_read_committed 
 
 



 
 

JISArchitectureAssessment.doc             Page 113 of 145                                                   9/3/2004 
Confidential 

APPENDIX E: NEW FUNCTIONALITY EFFORT ASSESSMENT 
 
Overview 
The first part of the document provides a rollup of the relative time costs for various types of 
common development efforts for each system’s architecture.  JIS is used for the current 
migration project while JIS NG is used for a new and optimized architecture for the migration 
project.  Target is an industry standard that should be considered the optimum numbers that JIS 
NG is trying to achieve. The second part provides the underlying details that were used to 
provide the rollup numbers. 
 
It should be noted that the JIS architecture is still in development and its numbers suffer from an 
incomplete and unpolished implementation that would become much cleaner and speedier to 
develop with if it were to be finished.  Another point to note is that CAPS, while providing a 
simple and easy to develop upon architecture does not have the visual interface capabilities of 
ACORDS or JIS mainly due to technical limitations in the web JSP view layer.  If CAPS had to 
support the full UI feature set of ACORDS or JIS its number would be much higher than the 
Swing equivalent due to the cost of supporting an extended UI feature set.   
 
Target numbers are based on the analyst’s experience with similar and actual components of the 
proposed architecture applied on projects with comparable types of business requirements.  The 
project used as a basis for the industry Target is an existing highly evolved architecture 
optimized to make common tasks like Swing window creation very fast, the JIS NG architecture 
is not likely to fully achieve these results during its first year of use, but it should be used as the 
intended goal.   
 
The issue for AOC is that to achieve these goals 20-30% of project time and personnel would 
have to be assigned to creating and maintaining this architecture.  In addition, one senior 
developer-architect acting as mentor and architect would be needed for every ten developers.  
Several options for JIS NG will be promoted that do not assume this level of technical staffing 
and commitment so the numbers for JIS NG will represent a more reasonable combination of 10-
20% of project time allocated to architecture and one senior developer-architect for every twenty 
developers. 
 



 
 

JISArchitectureAssessment.doc             Page 114 of 145                                                   9/3/2004 
Confidential 

Summary Numbers 
 
Number of days required for a moderately experienced Java developer to learn the systems to the 
point where they can perform at the level assumed by the rest of the analysis. 
 
 ACORDS CAPS JIS 
Learning Curve 12 weeks 3-4 weeks 6-8 weeks 

 
New Feature: Estimated days to add a create functionality for each application 
 
 ACORDS CAPS JIS JIS NG 
Swing 23 days  20 days * 21.5 days 11.5 days 
Web 25 days * 18 days  19.5 days * 11 days 
WebService 26 days * 24 days * 24.5 days 19.5 days 

* The client for this type does not exist yet. But it was estimated only for comparison. 
 
Breakdown:  
 
 ACORDS 

(Swing) 
CAPS 
(WEB) 

JIS (Swing) JIS NG 

Persistence Layer 4 6.5 4.5 1 
Domain Layer 0 0 2 2 
Data Transfer 
Layer 

1 1 4 0 

Service Layer 8 3.5 2.5 2.5 
Transport Layer 1 0 1.5 0 
Client Layer 9 7 7 6 
Total 23 18 21.5 11.5 

 
Maintenance: Estimated days to add a new field in the existing domain model 
 
ACORDS CAPS JIS JIS NG 
9 days 3.75 days 6 days 2.5 days 

 
Breakdown:  
 
 ACORDS 

(Swing) 
CAPS 
(WEB) 

JIS (Swing) JIS NG 

Persistence Layer 1 1 2.5 0.5 
Domain Layer 0 0 0.75 0.5 
Data Transfer 
Layer 

0.25 0.25 0.50 0 

Service Layer 6 1 0.50 0.5 
Transport Layer 0 0 0 0 
Client Layer 1.75 1.5 1.75 1 
Total 9 3.75 6.00 2.5 



 
 

JISArchitectureAssessment.doc             Page 115 of 145                                                   9/3/2004 
Confidential 

Enhancement: Estimated days to make a major change for an existing module 
Requirement for Enhancement 
If user tries to schedule an anchor case for hearing, schedule the consolidated cases also on the 
same day. Show a pop up window showing the cases that are consolidated and the time slots 
available on that day. User selects the cases and the time slot from the pop up. Application 
schedules all these cases for hearing on the same day on the specified time slots and shows them 
on the screen. 
 
ACORDS CAPS JIS JIS NG 
18 days 11.5 days 18 days 9 days 
 
Breakdown:  
 
 ACORDS 

(Swing) 
CAPS 
(WEB) 

JIS (Swing) JIS NG 

Persistence Layer 0 4 4.5 0 
Domain Layer 0 0 1.5 1 
Data Transfer 
Layer 

1 1 3.0 0 

Service Layer 10 2.5 2.5 4 
Transport Layer 1 0 1.0 0 
Client Layer 6 4 5.5 4 
Total 18 11.5 18.0 9 

 
Detailed Analysis - Estimated days to add a brand new create functionality for each application 
 
ACORDS 
Add a new create CalenderSchedule functionality using SWING UI 
CREATE (23 days) 

Client side (10 days) 
a) ValueObject (1 day) 

• Come up with a hierarchy of value objects 
b) CalendarDetail   (2 days) 

• Layout screen 
c) CalenderView (6 days) 

• Applying validation rules and unit tests for any new validation rule (1 
day) 

• Perform actions to call business delegate and unit tests (1 day) 
• Register UI components with ViewSupport and unit tests (1 day) 
• Pack/Unpack data on to screen components and unit tests (2 days) 
• Register View with Mainframe java class and unit test (1 day) 

d) Business Delegate (1 day) 
• Update BusinessDegate(RMIClientProxy) interface, implementation and 

unit tests (1 day) 
 

 
Server side (13 days) 



 
 

JISArchitectureAssessment.doc             Page 116 of 145                                                   9/3/2004 
Confidential 

a) RMI Layer (1 day) 
• Update RMIServlet interface, implementation and unit tests  

b) Façade (2 days) 
• Update ServerProxyCMPBean session bean interface, implementation 

and unit tests. This class is very fragile and too big to handle with 9000 
lines of code 

c) CalendarManagerBean – SessionBean (6 days) 
• Implement business validation for createCalendar and unit tests. (3 days) 
• Update ServiceLocator and uiit tests (1 day) 
• Implement createCalendar functionality (2 days) 

d) Calendar - Entity bean (4 days)  
• Create EntityBean (1 day) 
• Create EntityBean mapping to the database schema (1 days) 
• Unit test for entity bean (1 day)  
• Update ServiceLocator and uiit tests (1 day) 

 
 
READ (23 days)  Same amount of work required as CREATE 
UPDATE (23 days)  Same amount of work required as CREATE 
DELETE (23 days)  Same amount of work required as CREATE 
 
Total estimated number of days for the CRUD calendar schedule = 92 days 
Please note that this estimate only reflects the development time, but no analysis, QA tests, and 
deployment  
 
Add a new getCalenderSchedule functionality using WEB UI 
CREATE  (25 days) 

Client side (13 days) 
a) ValueObject (1 day) 

• Come up with a hierarchy of value objects to be passed back and forth 
b) JSP (12 days) 

• Layout screen (2 days) 
• Apply validation rules and unit tests (3 day) 

Note: Currently validations are done using javascriot which makes it very 
difficult for performing unit tests 

• Perform actions to call business delegate and unit tests (3 day) 
Note: There is no good framework been used here. All code is scattered 
inside the JSP, so difficult to develop 

• Pack/Unpack value objects on to screen components (2 days) 
• Update BusinessDegate(BCBean) interface, implementation and unit 

tests (1 day) 
• Update controller JSP (bridge.jsp)  1 day 

 



 
 

JISArchitectureAssessment.doc             Page 117 of 145                                                   9/3/2004 
Confidential 

 
Server side (12 days)  

a) Façade (2 days) 
• Update ServerProxyCMPBean session bean interface, implementation 

and unit tests. This class is very fragile and too big to handle with 9000 
lines of code 

b) CalendarManagerBean – SessionBean (6 days) 
• Implement business validation for createCalendar and unit tests. (3 days) 
• Update ServiceLocator and uiit tests (1 day) 
• Implement createCalendar functionality (2 days) 

c) Calendar - Entity bean (4 days)  
• Create EntityBean (1 day) 
• Create EntityBean mapping to the database schema (1 days) 
• Unit test for entity bean (1 day)  
• Update ServiceLocator and unit tests (1 day) 

 
Currently JSP are been used by the public users and are designed to be READ ONLY. Folowing 
is the estimate for CREATE, UPDATE, REMOVE functionality if required  
READ (25 days)  Same amount of work required as READ 
UPDATE (25 days)  Same amount of work required as READ 
DELETE (25 days)  Same amount of work required as READ 
 
Add a new createCalenderSchedule functionality using Webservice 
CREATE (26 days) 
 WebService Layer (14 days) 

a. Model and create XML schema’s for Value objects (3 days) 
b. Model and create XML schema’s for Exception classes (1 day) 
c. Create WSDL (3 days) 
d. Generate java stub classes from WSDL (1 day) 
e. Create CalendarWebserviceDelegate class. Implement createCalendarSchedule 

and unit tests (3 days) 
f. Implement createSchedule in CaleandarWebserviceImpl(1 day) 
g. Update global deployment descriptor and unit tests (2 days) 

Server side (12 days)  
a. Façade (2 days) 
b. Update ServerProxyCMPBean session bean interface, implementation and unit 

tests. This class is very fragile and too big to handle with 9000 lines of code 
c. CalendarManagerBean – SessionBean (6 days) 

• Implement business validation for createCalendar and unit tests. (3 days) 
• Update ServiceLocator and uiit tests (1 day) 
• Implement createCalendar functionality (2 days) 

d. Calendar - Entity bean (4 days)  
• Create EntityBean (1 day) 
• Create EntityBean mapping to the database schema (1 days) 
• Unit test for entity bean (1 day)  
• Update ServiceLocator and uiit tests (1 day) 

READ (26 days)  Same amount of work required as CREATE 



 
 

JISArchitectureAssessment.doc             Page 118 of 145                                                   9/3/2004 
Confidential 

UPDATE (26 days)  Same amount of work required as CREATE 
DELETE (26 days)  Same amount of work required as CREATE 
 
CAPS  
Add a new createCalenderSchedule functionality using WEB UI 
 
Create 18 days 
 

1) Client Layer  (8 days) 
a) CalendarValueObject (1 day) 
b) CalendarHelper (2.5 days) 

• The controller class which has the implementation for the “CREATE” action. 
Processes the action and handles error conditions. 

c) CapsWebHelperFactory (0.5 day) 
• Update this to create/retrieve an instance of required Helper class 

d) Calendar.jsp  (3 days) 
e) ClientProxy (1 day) 

• Update this to have the “create” method pass-through 
 

2) Server Layer (6 days) 
a) SessionProxyManager (1 day) 

• Update the façade to delegate the “create” method call to the correct Session 
bean using Service Locator. 

b) CalendarManagerBean Total of 3 classes and 2 deployment descriptors  (2.5 days) 
• Implement business validation and error messaging. 
• Call the service locator and execute the “create” method on the Calendar 

entity bean 
• Implement the roll back logic.  

c) Calendar Entity Bean – Total 3 classes and 2 deployment descriptors (2.5 days) 
• Implement the entity bean methods.  
• Provide the create method call to the QueryEngine. 

 
3) Persistence/DAO Layer (4 days) 

a) CalendarQueryEngine (2 days) 
• Implement the method for “createCalendar”, i.e. do the JDBC part to obtain 

connection, Create and Execute a Statement, close connection etc. 
b) CalendarSQLHelper (2 days) 

• The insert SQL for Calendar create. 
READ (18 days)  Same amount of work required as CREATE 
UPDATE (18 days)  Same amount of work required as CREATE 
DELETE (18 days)  Same amount of work required as CREATE 



 
 

JISArchitectureAssessment.doc             Page 119 of 145                                                   9/3/2004 
Confidential 

 
 
Add a new createCalenderSchedule functionality using WEB USING SWING UI  
Create  (20 days) 
 

b) Client Layer (10 days) 
a) CalendarValueObject (1 day) 
b) CalendarDetail   (2 days) 

• Layout screen 
c) CalenderView (6 days) 

• Applying validation rules and unit tests for any new validation rule been 
added (1 day) 

• Perform actions to call business delegate and unit tests (1 day) 
• Register UI components with ViewSupport and unit tests (1 day) 
• Pack/Unpack data on to screen components and unit tests (2 days) 
• Register View with Mainframe java class and unit test (1 day) 

c) ClientProxy (1 day) 
• Update this to have the “create” method pass-through. 
 

c) Server Layer (6 days) 
a) SessionProxyManager (1 day) 

• Update the façade to delegate the “create” method call to the correct Session 
bean using Service Locator. 

b) CalendarManagerBean Total of 3 classes and 2 deployment descriptors  (2.5 days) 
• Implement business validation and error messaging. 
• Call the service locator and execute the “create” method on the Calendar 

entity bean 
• Implement the roll back logic.  

c) Calendar Entity Bean – Total 3 classes and 2 deployment descriptors (2.5 days) 
• Implement the entity bean methods.  
• Provide the create method call to the QueryEngine. 

 
d) Persistence/DAO Layer (4 days) 

a) CalendarQueryEngine (2 days) 
• Implement the method for “createCalendar”, i.e. do the JDBC part to obtain 

connection, Create and Execute a Statement, close connection etc. 
b) CalendarSQLHelper (2 days) 

• The insert SQL for Calendar create. 
READ (20 days)  Same amount of work required as CREATE 
UPDATE (20 days)  Same amount of work required as CREATE 
DELETE (20 days)  Same amount of work required as CREATE 
 



 
 

JISArchitectureAssessment.doc             Page 120 of 145                                                   9/3/2004 
Confidential 

 
Add a new createCalenderSchedule functionality using WebService 
 
Create (24 days) 
 

1. WebService Layer (14 days) 
a. Model and create XML schema’s for Value objects (3 days) 
b. Model and create XML schema’s for Exception classes (1 day) 
c. Create WSDL (3 days) 
d. Generate java stub classes from WSDL (1 day) 
e. Create CalendarWebserviceDelegate class. Implement createCalendarSchedule 

and unit tests (3 days) 
f. Implement createSchedule in CaleandarWebserviceImpl(1 day) 
g. Update global deployment descriptor and unit tests (2 days) 

 
2. Server Layer (6 days) 

a. SessionProxyManager (1 day) 
• Update the façade to delegate the “create” method call to the correct Session 

bean using Service Locator. 
b. CalendarManagerBean Total of 3 classes and 2 deployment descriptors  (2.5 days) 

• Implement business validation and error messaging. 
• Call the service locator and execute the “create” method on the Calendar 

entity bean 
• Implement the roll back logic.  

c. Calendar Entity Bean – Total 3 classes and 2 deployment descriptors (2.5 days) 
• Implement the entity bean methods.  
• Provide the create method call to the QueryEngine. 

 
3. Persistence/DAO Layer (4 days) 

a. CalendarQueryEngine (2 days) 
Implement the method for “createCalendar”, i.e. do the JDBC part to obtain 

connection, Create and Execute a Statement, close connection etc. 
b. CalendarSQLHelper (2 days) 

The insert SQL for Calendar create. 
 
READ (24 days)  Same amount of work required as CREATE 
UPDATE (24 days)  Same amount of work required as CREATE 
DELETE (24 days)  Same amount of work required as CREATE 
 



 
 

JISArchitectureAssessment.doc             Page 121 of 145                                                   9/3/2004 
Confidential 

JIS 
Add a new createCalenderSchedule functionality using SWING UI 
CREATE (21.5 days) 
 

Client side (11 days) 
a. Create new ValidationRule if required (1 day) 
b. Create CalendarDto, attach ValidationRules and unit tests (1 day) 
c. Create ObjectPaths for CalendarDto and unit tests (1 day) 
d. Create CalendarDtoFactory and unit tests (1 day) 
e. Create View interface (1 day) 
f. Create GUIView ,TestView and unit tests (3 days) 
g. Create Controller and unit tests (3 days) 
 

Server Side(10.5 days) 
a. Create AddCalendarServiceRequest, CalendarServiceEvent and 

CalendarServiceProvider and unit tests – Servlet tier.  (1 day) 
b. Create Calendar domain object (1 day) 
c. Create CalendarConverter that converts domain to dto and back and forth (1 day) 
d. Create CalendarBusinessDelegate and implement createCalendarSchedule and 

unit test (0.5 days) 
e. Create InMemoryCalendarRepository, implement createCalenderSchedule and 

unit tests (1 day) 
f. Create PersistentCalendarRepository, implement createCalenderSchedule and unit 

tests (1.5 days) 
g. Create CalendarManagerBean. Implement createCalenderSchedule with business 

validation and unit tests  (2 days) 
h. Create Calendar entity bean and map entity bean to the database schema (1 day)  
i. Unit test for entity bean(1 day) 
j. Add newly added beans to ServiceLocator (0.5 day) 

READ (21.5 days)  Same amount of work required as CREATE 
UPDATE (21.5 days)  Same amount of work required as CREATE 
DELETE (21.5 days)  Same amount of work required as CREATE 
 
Add a new createCalenderSchedule functionality using WEB UI 
CREATE (19.5 days) 

Client side (9 days) 
a. Create new ValidationRule if required (1 day) 
b. Create CalendarDto, attach ValidationRules and unit tests (1 day) 
c. Create ObjectPaths for CalendarDto and unit tests (1 day) 
d. Create CalendarDtoFactory and unit tests (1 day) 
e. Create JSP (2 days) 
f. Update Controller servlet and unit tests (3 days) Assuming sorting, filtering 

functionalities etc to be implemented in the servlet 
 

Server Side (10.5 days) 
a. Create AddCalendarServiceRequest, CalendarServiceEvent and 

CalendarServiceProvider and unit tests – Servlet tier.  (1 day) 



 
 

JISArchitectureAssessment.doc             Page 122 of 145                                                   9/3/2004 
Confidential 

b. Create Calendar domain object (1 day) 
c. Create CalendarConverter that converts domain to dto and back and forth (1 day) 
d. Create CalendarBusinessDelegate and implement createCalendarSchedule and 

unit test (0.5 days) 
e. Create InMemoryCalendarRepository, implement createCalenderSchedule and 

unit tests (1 day) 
f. Create PersistentCalendarRepository, implement createCalenderSchedule and unit 

tests (1.5 days) 
g. Create CalendarManagerBean. Implement createCalenderSchedule with business 

validation and unit tests  (2 days) 
h. Create Calendar entity bean and map entity bean to the database schema (1 day)  
i. Unit test for entity bean(1 day) 
j. Add newly added beans to ServiceLocator (0.5 day) 

READ (19.5 days) Same amount of work required as CREATE 
UPDATE (19.5 days) Same amount of work required as CREATE 
DELETE (19.5 days) Same amount of work required as CREATE 
 
 
Add a new createCalenderSchedule functionality using Webservice 
 
CREATE (24.5 days) 

WebService Layer (14 days) 
a. Model and create XML schema’s for Value objects (3 days) 
b. Model and create XML schema’s for Exception classes (1 day) 
c. Create WSDL (3 days) 
d. Generate java stub classes from WSDL (1 day) 
e. Create CalendarWebserviceDelegate class. Implement createCalendarSchedule 

and unit tests (3 days) 
f. Implement createSchedule in CaleandarWebserviceImpl(1 day) 
g. Update global deployment descriptor and unit tests (2 days) 

 
Server Side (10.5 days) 

a. Create AddCalendarServiceRequest, CalendarServiceEvent and 
CalendarServiceProvider and unit tests – Servlet tier.  (1 day) 

b. Create Calendar domain object (1 day) 
c. Create CalendarConverter that converts domain to dto and back and forth (1 day) 
d. Create CalendarBusinessDelegate and implement createCalendarSchedule and 

unit test (0.5 days) 
e. Create InMemoryCalendarRepository, implement createCalenderSchedule and 

unit tests (1 day) 
f. Create PersistentCalendarRepository, implement createCalenderSchedule and unit 

tests (1.5 days) 
g. Create CalendarManagerBean. Implement createCalenderSchedule with business 

validation and unit tests  (2 days) 
h. Create Calendar entity bean and map entity bean to the database schema (1 day)  
i. Unit test for entity bean(1 day) 
j. Add newly added beans to ServiceLocator (0.5 day) 



 
 

JISArchitectureAssessment.doc             Page 123 of 145                                                   9/3/2004 
Confidential 

READ (24.5 days) Same amount of work required as CREATE 
UPDATE (24.5 days) Same amount of work required as CREATE 
DELETE (24.5 days)  Same amount of work required as CREATE 
 
Estimated days to add a brand new create functionality for each application 
 
JIS NG 
 
CREATE (11.5 days) 

Client side (6 days) 
Create View(3 day) 
Create Controller and unit tests (3 days) 

 
Server Side(5.5 days) 
Create Calendar domain object, and validation rules and unit tests (2.0 day) 
Create CalendarBusinessDelegate and implement createCalendarSchedule and unit test 

(0.5 days) 
Create CalendarManagerJiniService, add this to ServiceLocator.. Implement 

createCalenderSchedule with business validation and unit tests  (2 days) 
Create Hibernate map to the database schema, and unit tests (1 day)  

READ (11.5 days)  Same amount of work required as CREATE 
UPDATE (11.5 days)  Same amount of work required as CREATE 
DELETE (11.5 days)  Same amount of work required as CREATE 
 
Add a new createCalenderSchedule functionality using JSF WEB UI 
CREATE (11.0 days) 

Client side (5.5 days) 
a. Create JSF (2 days) 
b. Create BackingBeans and unit tests.(2.5 day) 
c. Create Application configuration resource files. (1.0 day) 

 
Server Side (5.5 days) 

Create Calendar domain object, and validation rules and unit tests (2.0 day) 
Create CalendarBusinessDelegate and implement createCalendarSchedule and unit test (0.5 

days) 
Create CalendarManagerJiniService, add this to ServiceLocator.. Implement 

createCalenderSchedule with business validation and unit tests  (2 days) 
Create Hibernate map to the database schema, and unit tests (1 day)  

READ (11.0 days)  Same amount of work required as CREATE 
UPDATE (11.0 days)  Same amount of work required as CREATE 
DELETE (11.0 days)  Same amount of work required as CREATE 
 



 
 

JISArchitectureAssessment.doc             Page 124 of 145                                                   9/3/2004 
Confidential 

Add a new createCalenderSchedule functionality using Webservice 
 
CREATE (19.5 days) 

WebService Layer (14 days) 
Model and create XML schema’s for Value objects (3 days) 
Model and create XML schema’s for Exception classes (1 day) 
Create WSDL (3 days) 
Generate java stub classes from WSDL (1 day) 
Create CalendarWebserviceDelegate class. Implement createCalendarSchedule and unit tests 

(3 days) 
Implement createSchedule in CaleandarWebserviceImpl(1 day) 
Update global deployment descriptor and unit tests (2 days) 

 
Server Side(5.5 days) 

Create Calendar domain object, and validation rules and unit tests (2.0 day) 
Create CalendarBusinessDelegate and implement createCalendarSchedule and unit test (0.5 
days) 
Create CalendarManagerJiniService, add this to ServiceLocator.. Implement 
createCalenderSchedule with business validation and unit tests  (2 days) 
Create Hibernate map to the database schema, and unit tests (1 day)  
READ (19.5 days)  Same amount of work required as CREATE 
UPDATE (19.5 days)  Same amount of work required as CREATE 
DELETE (19.5 days)  Same amount of work required as CREATE 



 
 

JISArchitectureAssessment.doc             Page 125 of 145                                                   9/3/2004 
Confidential 

 
Estimated days to add a new field (maintenance) in the existing domain model 
 
ACORDS 
 
Using SWING UI (9 days) 
Client side (2 days) 

a) ValueObject (0.25 day) 
• Add new property to a value objects 

b) CalendarDetail   (0.5 days) 
• Add new View Component to Layout screen 

c) CalenderView (1.25 days) 
• Applying validation rules to the new property(0.5 day) 
• Register UI component with ViewSupport and unit test (0.25 day) 
• Test Pack/Unpack by runing unit tests (0.5 days) 

 
Server side (7 days) 

a) CalendarManagerBean – SessionBean (6 days) 
• Implement business validation for the new attribute and unit tests. Note: 

Estimation considers the fact that this is a huge class which is not refactored  
(1.5 day). 

• Manually locate calls to this service and verify it does not break any other 
service. Note: This step is required because current unit test suit does not 
provide a full coverage (4 days) 

• Update the SQLs which retrieve data  (0.5 day) 
b) Calendar - Entity bean (1 day)  

• Update EntityBean mapping to map to the new field(0.5 days) 
• Unit test for entity bean (0.5 day)  



 
 

JISArchitectureAssessment.doc             Page 126 of 145                                                   9/3/2004 
Confidential 

Estimated days to add a new field (maintenance) in the existing domain model 
 
CAPS 
 
Using Web UI (3.75 days) 
 

1) Client Layer  (1.75 days) 
a) CalendarValueObject (0.25 day) 
b) CalendarHelper (0.5 days) 

• Applying validation rules to the new property. Processes the action and 
handles error conditions. 

c) Calendar.jsp  (1 day) 
 

2) Server Layer (1 days) 
a) CalendarManagerBean (1 day) 

• Implement business validation and error messaging. 
3) Persistence/DAO Layer (1 days) 

a) CalendarQueryEngine (0.5 days) 
• JDBC part to obtain connection, Create and Execute a Statement, close 

connection etc. 
b) CalendarSQLHelper (0.5 days) 

• The insert SQL for Calendar create. 



 
 

JISArchitectureAssessment.doc             Page 127 of 145                                                   9/3/2004 
Confidential 

Estimated days to add a new field (maintenance) in the existing domain model 
 
JIS 
 
Using SWING UI (6 days) 
 
Client side (2.5 days) 

a. Create new ValidationRule if required (0.25 day) 
b. Create CalendarDto, attach ValidationRules and unit tests (0.25 day) 
c. Create ObjectPaths for CalendarDto and unit tests (0.25 day) 
d. Update View interface (0.25 day) 
e. Update GUIView ,TestView and unit tests (0.5 days) 
f. Update Controller and unit tests (1 days) 

 
Server Side (3.5 days) 

a. Update Calendar domain object (0.25 day) 
b. Update CalendarConverter that converts domain to dto and back and forth (0.25 day) 
c. Update InMemoryCalendarRepository, implement createCalenderSchedule and unit tests 

(0.5 day) 
d. Update PersistentCalendarRepository, implement createCalenderSchedule and unit tests 

(1 day) 
e. Update CalendarManagerBean for business validation and unit tests  (0.5 days) 
f. Update Calendar entity bean and map entity bean to the database schema (0.5 day)  
g. Unit test for entity bean(0.5 day) 



 
 

JISArchitectureAssessment.doc             Page 128 of 145                                                   9/3/2004 
Confidential 

Estimated days to add a new field (maintenance) in the existing domain model 
 
JIS NG 
 
Using SWING UI (2.5 days) 
 
Client side (1.0 days) 

Update View and unit tests(0.5 day) 
Update Controller and unit tests (0.5 days) 

 
Server Side (1.5 days) 

Update Calendar domain object and unit tests (0.5 day) 
Update CalendarManagerJiniService for business validation and unit tests  (0.5 days) 
Update Hibernate mapping to the database schema (0.5 day)  



 
 

JISArchitectureAssessment.doc             Page 129 of 145                                                   9/3/2004 
Confidential 

 Estimated days to make a major change on UI and business rules for an existing module 
 
Enhancement title: If user tries to schedule an anchor case for hearing, schedule the consolidated 
cases also on the same day. Show a pop up window showing the cases that are consolidated and 
the time slots available on that day. User selects the cases and the time slot from the pop up. 
Application schedules all these cases for hearing on the same day on the specified time slots and 
shows them on the screen. 
 
ACORDS 
 

Client side (7 days) 
a) ValueObject (1 day) 

• Change the ValueObject to include multiple case numbers (enumeration) 
and unit tests (1 day) 

b) Create CalendarConsolidatedCasesConfirmationWindow (1.5 day) 
c) CalenderView (4.5 days) 

• Applying validation rules for the popup window and unit tests (0.5 days) 
• Perform actions to call business delegate to get the consolidated cases 

and unit tests (1 day) 
• Register PopupWindow UI components with ViewSupport and unit tests 

(1 day) 
• Pack/Unpack data for the popup window and unit tests (1 day) 
• Update BusinessDegate(RMIClientProxy) interface, implementation and 

unit tests for enhancing the service retrieveTimeSlots to accept a date 
parameter so that it can retrieve the available time slots for a given day 
(0.5 days) 

• Update BusinessDegate(RMIClientProxy) interface, implementation and 
unit tests for adding the new service getConsolidatedCases (0.5 days). 

 
Server side (11 days) 

a) RMI Layer (1 day) 
• Update RMIServlet interface, implementation and unit tests for 

enhancing retrieveTimeSlots()  (0.5 days) 
• Update RMIServlet interface, implementation and unit tests for 

enhancing getConsolidatedCases()  (0.5 days) 
b) Façade (1 day) for enhancing retriveTimeSlots 

• Update ServerProxyCMPBean session bean interface, implementation 
and unit tests for enhancing retriveTimeSlots. This class is very fragile 
and too big to handle with 9000 lines of code (0.5 day) 

• Update ServerProxyCMPBean session bean interface, implementation 
and unit tests for adding the new service getConsolidatedCases. (0.5 
days) 

c) CalendarManagerBean – SessionBean (6 days) 
• Update business validation for retriveTimeSlots and unit tests. (1 day) 
• Update business validation for createCalendarSchedule and unit tests. 

This service should now accept an enumeration of case numbers (1 day) 
• Enhance createCalendar functionality and unit tests(2 days) 



 
 

JISArchitectureAssessment.doc             Page 130 of 145                                                   9/3/2004 
Confidential 

• Enhance retrieveTimeslots functionality and unit tests(2 days) 
d) CaseManagerBean (3 days) 

• Add business rules for new service retrieveConsolidatedCases (1 day) 
• Add new service retrieveConsolidatedCases and unit tests(2 days) 

CAPS 
 

1) Client Layer  (5 days) 
a) CalendarValueObject (1 day) –  

• Change the ValueObject to include multiple case numbers (enumeration) and 
unit tests (1 day) 

b) CalendarConsolidatedCasesConfirmationWindow Helper (2.0 days) 
• The controller class which has the implementation for the 

“CalendarConsolidatedCasesConfirmationWindow” action. Processes the 
action and handles error conditions. 

c) CapsWebHelperFactory (0.5 day) 
• Update this to create/retrieve an instance of required Helper class 

d) CalendarConsolidatedCasesConfirmationWindow.jsp  (1 day) 
e) ClientProxy (0.5 day) 

• Update this to have the “getConsolidatedCases” and “retrieveTimeSlots” 
method pass-through 

 
2) Server Layer (2.5 days) 

a) SessionProxyManager (0.5 day) 
• Update the façade to delegate the “getConsolidatedCases” and 

“retrieveTimeSlots” method call to the correct Session bean using Service 
Locator. 

b) CalendarManagerBean (1 day) 
• Implement business validation and error messaging. 

c) CaseManagerBean (1 day) 
• Implement business validation and error messaging 
• Create “getConsolidateCases” method and unittests. 

3) Persistence/DAO Layer (4 days) 
a) CalendarQueryEngine (1 days) 

• Implement the method for “retrieveTimeSlots”, i.e. do the JDBC part to obtain 
connection, Create and Execute a Statement, close connection etc. 

b) CalendarSQLHelper (1 day) 
• The SQL for “retrieveTimeSlots” 

c)  CaseQueryEngine (1 days) 
• Implement the method for “getConsolidatedCases”, i.e. do the JDBC part to 

obtain connection, Create and Execute a Statement, close connection etc. 
d) CaseSQLHelper (1 day) 

• The SQL for “getConsolidateCases” 



 
 

JISArchitectureAssessment.doc             Page 131 of 145                                                   9/3/2004 
Confidential 

JIS 
Client side (8 days) 

a. Create new ValidationRule if required (0.5 day) 
b. Update CalendarDto and CalendarObjectPath to contain the list of consolidated 

cases (0.5 day). 
c. Create CalendarConsolidatedCaseDto, attach ValidationRules and unit tests (0.5 

day) 
d. Create ObjectPaths for CalendarConsolidatedCaseDto and unit tests (0.5 day) 
e. Create CalendarConsolidatedCaseDto Factory and unit tests (0.5 day) 
f. Create View interface (0.5 day) 
g. Create GUIView ,TestView and unit tests (2 days) 
h. Create Controller, Action classes, and unit tests (2 days) 
i. Update JISMainController to incorporate new controller (1 day). 
 

Server Side (10 days) 
a. Create CalendarConsolidatedCaseServiceRequest, 

CalendarConsolidatedCaseServiceEvent and 
CalendarConsolidatedCaseServiceProvider and unit tests – Servlet tier.  (1 day) 

b. Create CalendarConsolidatedCase domain object (0.5 day) 
c. Update Calendar domain object to contain the list of consolidated cases (0.5 day). 
d. Create CalendarConsolidatedCaseConverter that converts domain to dto and back 

and forth (0.5 day) 
e. Create  getConsolidatedCases in CaseBusinessDelegate and unit tests  (0.5 days) 
f. Update InMemoryCaseRepository to implement getConsolidatedCases (1 day). 
g. Update PersistentCaseRepository to implement getConsolidatedCases (1 day). 
h. Update CaseManagerBean to implement getConsolidatedCases and unit tests (1 

day)  
i. Update CalendarConverter to handle the list of consolidated cases (0.5 day). 
j. Update CalendarBusinessDelegate to handle the list of consolidated cases and unit 

test (0.5 days) 
k. Update InMemoryCalendarRepository to handle the list of consolidated cases and 

unit test (1 day) 
l. Update PersistentCalendarRepository to handle the list of consolidated cases and 

unit tests (1.5 days) 
m. Update CalendarManagerBean to handle the list of consolidated cases with 

business validation and unit tests (0.5 day). 



 
 

JISArchitectureAssessment.doc             Page 132 of 145                                                   9/3/2004 
Confidential 

JIS NG (9 days) 
 

Client side (4.0 days) 
a. Create View and unit test(1.5 day) 
b. Create Controller, Action classes, and unit tests (2.5 days) 
 

Server Side (5 days) 
a. Create CalendarConsolidatedCase domain object (0.5 day) 
b. Update Calendar domain object to contain the list of consolidated cases (0.5 day). 
c. Create  getConsolidatedCases in CaseBusinessDelegate and unit tests  (0.5 days) 
d. Update CaseManagerJiniService to implement getConsolidatedCases and unit 

tests (1 day)  
e. Update CalendarBusinessDelegate to handle the list of consolidated cases and unit 

test (0.5 days) 
f. Update CalendarManagerJiniService to handle the list of consolidated cases with 

business validation and unit tests. This service should now accept an enumeration 
of case numbers (1.0 day). 

g. Enhance retrieveTimeslots functionality and unit tests(1 days) 
 



 
 

JISArchitectureAssessment.doc             Page 133 of 145                                                   9/3/2004 
Confidential 

APPENDIX F: JIS NG ARCHITECTURE 
 
Introduction 
JIS NG is the tag name for the future or Next Generation of the architecture that will host all new 
development, as well as, the migration of existing AOC applications. These recommendations 
are intended to address the limitations of the current AOC architecture as described in Appendix 
C.  

Several important issues need to be resolved by a comprehensive architecture: 
1) Producing the most productive development environment possible while satisfying the needs 
of the business. 
2) Keeping the developer learning curve and training requirements to a minimum. 
3) Selecting tools and technologies that have longevity and are standardized or have source code 
available. 
4) Carefully weighing cost to develop or purchase against perceived benefit. 
5) Providing the minimum of complexity that satisfied the expected application requirements. 
6) Balance speed of development against deployments needs such as scalability and 
performance. 

Architectural Layers and Technology Options 
Architectures are typically broken into layers. Layers are supposed to limit dependencies by only 
allowing one layer to talk with the layer directly above and the layer directly below. Limiting 
dependencies yields the freedom to change the technology used in one layer while minimizing 
the impact to other layers. One technology or tool may provide the functionality of multiple 
layers, but ideally each layer is independent and can be swapped-out or optimized without 
affecting other layers. 
Database layer 

A developer only database is needed that is kept separate from all production style databases. As 
late as possible, the development database schema on new projects should be altered to match the 
expected production database. This will allow development to proceed at the fastest speed 
possible. Having an Object/Relational mapping layer is critical to allowing this flexibility.  

The database architecture must be improved to provide a simplified interface for the 
Object/Relational mapping layer. This is necessary to provide adequate run-time performance 
and to ensure that the productivity of the application developer is optimal.  

Options: 
DB2  
 
Recommendation 
DB2 - There is no technical reason to switch from DB2.  
 
Persistence layer 
Persistence, Object/Relational mapping, and transactions are all addressed in this layer.  
 



 
 

JISArchitectureAssessment.doc             Page 134 of 145                                                   9/3/2004 
Confidential 

Data access implementation strategy 
While JDBC is a given with Java systems it is best to have no hard coded SQL anywhere in the 
application and no stored procedures and limited use of database integrity rule implementation. 
Any database-level issues that are exposed in the applications code or rules that are captured in 
the database will slow down the speed at which application code can be developed and changed.  
 
Mapping layer  

A mapping layer cleanly separates the application code from the database. Also the mapping 
allows the application and database to grow and change independently, which allows DBAs to 
make changes without too much concern to the impact on applications so less coordination 
between the groups and less reconciling of their divergent concerns is required.  

Options: 
 
Hibernate 
Hibernate is a popular Java Object/Relational mapping solution.  
 
Java Data Objects (JDO) version 2 
JDO is a standard with both open and commercial options available.  
 
TopLink  
TopLink is an Oracle product that supports DB2.  
 
Recommendation 
Hibernate is strongly recommended as an Object/Relational Mapping solution. It is the future of 
object relational mapping and is highly recommended by developers that are using it.  

Hibernate is the most popular object/relational mapping solution for Java, with thousands of 
deployed systems, an active community of 6000 registered users all over the world, and tens of 
thousands of developers working with Hibernate day to day. 

While looking for proven relational persistence solutions, the EJB3 Expert Group was inspired 
by this success and picked several key features of Hibernate for inclusion in the next major 
version of the EJB industry standard. We are very happy to see this first industry-wide effort to 
integrate Full Object/Relational Mapping into a central Java specification.  

The EJB3 specification will support transparent persistence of plain Java objects, with a very 
similar feature set to Hibernate. The EntityManager and Query interfaces are also similar. This 
means that you will be able to use your Hibernate knowledge when creating EJB3 applications. 
You will find yourself in a familiar environment with outstanding object/relational mapping 
features, focused on the best possible integration with relational databases. 

Domain layer 
The domain layer contains the application’s business logic. 
 
Options: 



 
 

JISArchitectureAssessment.doc             Page 135 of 145                                                   9/3/2004 
Confidential 

Simple Java objects built with the JavaBean standards.  
 
Recommendation 

Simple Java objects - Sticking with simple Java objects, as much as possible, speeds-up 
development and improves overall quality.  

Data Transfer Layer 

The data transfer layer provides the mechanism for transferring domain layer data to clients. 

Options: 
 
Metadata-driven user interface 
Strategies exist which allow user interfaces to be generated directly from metadata which 
describe their relationship with the domain layer. The user interface components can be bound 
automatically to the domain layer data.  
 
Automatic mapping of domain layer to transport format 
The domain layer data will be sent to the client using a two step process. The data will be 
converted automatically to a serialization format for transport. Additionally, the client user 
interface components must be explicitly mapped to the expected transport data.  
 
Recommendation 
The metadata-driven approach would only be effective if standardization of the UI could be done 
without hand building and tweaking the UI could then directly using the domain model. 
For the JIS NG architecture, it is recommended to use an Automatic mapping approach that 
standardizes distributing domain object to clients and minimizes hand coding.  
 
Service Layer 

The service layer exposes the domain layer's business services.  

Options: 
 
JINI services.  
JINI is a Sun originated standard for service-based system development that is provided for free 
with source.  
 
EJB Session Beans 
EJB Session Beans can provide security and transaction management but require complicated 
development and deployment processes.  
 
Recommendation 
JINI is the best way to deal with distributed object systems that are service-oriented and is 
recommended over Session beans due to JINI’s lower overhead and speedier development 
model.  



 
 

JISArchitectureAssessment.doc             Page 136 of 145                                                   9/3/2004 
Confidential 

 
JINI's use for Service Oriented Architectures 
> excerpt from 
http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,94945,00.html  
AUGUST 02, 2004 (COMPUTERWORLD) - For some companies, procuring software isn't a 
binary buy-it-or-build-it proposition. "We are largely an open-source shop, so when we think 
about buying software, there's a general aversion to it," says Orbitz CTO Chris Hjelm. The 
online travel company uses open-source Linux on most of its 1,000 servers and the free JINI 
network architecture for distributed systems.  

"We've built our services layer such that when you make a call to the JINI framework – to buy an 
airline ticket, for example – it manages that request. It goes off and finds all the back-end 
complex things that have to happen to build an airline ticket, and it makes that transparent," he 
says. 

> excerpt from http://sys-con.com/story/?storyid=44361&DE=1  
Webservices Journal - SOA Came to Boston at EDGE (East) 2004  

Recounting briefly the history of Orbitz's service-oriented architecture, Hjelm said that Java was 
the first big decision, and JINI the second. "So when SOA became popular, Orbitz had already 
found it. 

"The JINI distributed computing framework focuses on interfaces and capabilities not 
implementation and location," Hjelm said. 
… 
"If you were to take the average person and explain GDS to them, their head would hurt," he 
added, "whereas we can get developers up to speed on Orbitz fast. We add a new machine, bring 
it up into the network, and JINI recognizes it and starts to draw on it. It works.  

"So the growth in our code base isn't in the services layer, it's in the application layer," he 
pointed out. That is the key to Orbitz's success, and that in turn is a function of its architectural 
choices. 

Transport layer 

The transport layer provides the protocol for sending data across the network.  

Options: 
 
JERI  
JERI is Sun's latest RMI implementation that allows flexible implementation.  
 
RMI/JRMP 
Sun's RMI/JRMP is the original Remote Method Invocation mechanism for providing the ability 
to call Java methods on remote applications.  
 
Web Services 



 
 

JISArchitectureAssessment.doc             Page 137 of 145                                                   9/3/2004 
Confidential 

All service clients, including Swing, access the business services through web services.  
 
Recommendation 
JERI provides more power than RMI while keeping the benefits of a Java optimized solution. 
JERI stands for JINI Extensible Remote Invocation, the Extensible part allows for options such 
as replacing the transport protocol with http allowing it to work across firewalls through the 
standard port 80 just like web services and web browsers.  

JiniExtensible Remote Invocation is a new implementation of the Java Remote Method 
Invocation (RMI) programming model that provides APIs for customizing remote method 
invocation behavior on a per-remote object basis. The JINI ERI framework provides pluggable 
components representing the various layers of the RMI protocol stack; by extending or replacing 
these components, applications can tailor the transport, invocation and dispatch behavior of 
remote method calls. 

Client layer 
There are two types of clients that are needed, a Rich client for heavy data entry and a public 
Web client. It may be possible to support both sets of users with one type of UI technology be 
either distributing Swing over the web or by using a Rich Web client for both audiences. 
Additionally, a web service interface is required.  
 
Rich Client with Swing 
 
Options: 
 
Metadata-driven UI generated with templates 
Strategies exist which allow user interfaces to be generated automatically using templates and 
metadata mapping. No custom coding of Swing components is necessary. Swing components are 
dynamically created and automatically bound to domain data.  
 
User interface components bound by tags to domain data 
Object and attribute names will be used to manually tag UI components to allow binding 
between pre-built UIs and domain data.  
 
Recommendation 
If the users can be convinced to give up some control over the UI behavior of each window and 
accept a generalized approach, such as the Universal Navigation strategy, then there would be a 
large cost and time savings achieved by generating the UI dynamically instead of manually. 
There would not be any overall usability compromises, but any usability requirements would be 
implemented in a common way for all windows of a given task type and would not be 
customizable for a specific window.  

If optimum usability is selected over cost and speed, then having another group build the 
windows and provide tags that connect them to the domain data is the best option. 

It is also recommended that third party Swing components be used instead of writing custom 
components for such things as Calendar controls.  



 
 

JISArchitectureAssessment.doc             Page 138 of 145                                                   9/3/2004 
Confidential 

 
Public Web access 
 
Options: 
 
Java Server Faces (JSF) 
Java Server Faces is a Java standard which provides a programming model similar to Swing for 
web application development.  
 
Java Servlets with a template engine such as Velocity 
Velocity is one of many template engines used for rendering web user interfaces.  
 
Recommendation 
JSF is recommended as it provides a model that allows much of the user interface code to be 
reused. A Swing client user interface can be exposed as a web interface with minimal effort.  
 
Web service layer 
 
Recommendation 
Apache AXIS is recommended, along with the use of WSDL generation tools to speed up AXIS 
development.  
 
Recommended Technology Stacks 
The three types of user interfaces each need some unique technologies, but they all share as 
many solutions as possible.  
 

Layer 1) Web 2) Swing 3) Web service 

Client JSF Hand coded UI AXIS 

Transport JERI JERI SOAP 

Service JINI JINI JINI 

Transport format Generic generic generic 

Domain JavaBeans JavaBeans JavaBeans 

Persistence Hibernate Hibernate Hibernate 

Database DB2 DB2 DB2 

 
Deployment Environment 
It is recommended that a JRE (Java Runtime Environment) version 5.0 be used for deployment. 
WebSphere is not required. It is recommended that a lighter weight web application container, 
such as Tomcat, be used.  
 



 
 

JISArchitectureAssessment.doc             Page 139 of 145                                                   9/3/2004 
Confidential 

To speed the development effort, any hurdles the developers face, i.e., deployment to Websphere 
in order to test each code change, should be removed. Tomcat will provide the most productive 
environment for developers.  
 
Development Environment 
To maximize the productivity of developers, it is important to have the flexibility to use the latest 
version of development tools. The most productive environment currently available is Eclipse 
3.x plus JDK (Java Development Kit) 5.0. It is recommended that a current version of Eclipse be 
used with JDK 5.0.  
 
The latest Java Runtime Environment (5.0) provides a number of developer productivity 
enhancements. Moving to the latest JDK at this point will lessen long-term costs as the training 
and effort required to move to the latest JDK can be rolled into the development effort. Many 
tools and technologies are starting to require JDK 5.0, which will start to limit the choices 
available and lessen the speed improvements possible even more as time progresses.  
 
Programming Model 
 
Metadata or Model-driven development  
Metadata-driven development is a strategy that leverages configuration information kept separate 
from source code, allowing changes to an external file that will affect the application. These 
strategies save developer time by externalizing portions of the code that need to be frequently 
changed and need to be accessed from many places throughout the code.  
 
Spring Container 
Spring is a framework for simplifying configuration and lessening dependencies. The key benefit 
to this approach is to allow technologies to be switched out by changing external configuration 
files and not source code. Also it lessens the amount of technology specific Java code that 
developers have to write, keeping the code cleaner, simpler and easier to understand and 
maintain. 
 
Security 
It is recommended that a security architecture be integrated with a dependency injection 
framework such as Spring or PicoContainer. Acegi Security is a standard security approach when 
using such a framework.  
 
Reporting 
It is recommended that a third party reporting component be integrated into the JIS NG 
architecture. There are several available such as Jasper Reports, Style Reports, and JReport.  
 



 
 

JISArchitectureAssessment.doc             Page 140 of 145                                                   9/3/2004 
Confidential 

APPENDIX G: EVALUATED SHORT TERM ALTERNATIVES 
 
These development efforts are fairly independent and in general could be pursued concurrently.  
 
Deliver the JIS Migration April 2005 release goals 
The goals which the JIS Migration was intended to support for the October 2004 and April 2005 
release could be met by June 2005, as long as, an effort is taken to significantly improve the 
database and application architectures. If these JIS Migration goals are no longer desirable, it 
would also be possible to achieve other business goals of a similar scope. This would require a 
short effort of two to three months to improve the application and database architectures. After 
these improvements are in place, the development effort could be scaled up to support additional 
teams. 

These changes will allow development to proceed at a much faster pace than was previously 
possible. To optimize this strategy, an increase in the amount of QA and DBA resources will be 
required. 

Add CAPS scheduling functionality to ACORDS. 
If it is desirable to provide ACORDS users with scheduling functionality that is similar to CAPS 
and is integrated into the ACORDS application, it is possible that this could be achieved in the 
June 2005 time frame. This new version of ACORDS would be identical to the current version 
but the scheduling functionality would be replaced. 
This would provide the following benefits:   

• Support a second court level. Appelate court users would have the required portion of the 
CAPS scheduling model seamlessly integrated into their application. 

• Migration of scheduling functionality to a new architecture. This effort would involve the 
creation of a new Calendaring service, initially just to serve the ACORDS users, but later 
generalized for all users. This service could be more easily integrated in other 
applications and would be built on JIS NG. 

• Seamless integration with ACORDS. The strategy is to merge the current ACORDS UI 
with the new CAPS Swing UI so that users do not realize that they are really accessing 
two backend systems. 

Integration with external applications 
There are several efforts which could be under taken to provide services that would integrate 
with systems external to AOC.  

Some of the potential benefits include:  

• Integration with document management systems. 
• Data extraction efforts can be improved. A data extraction architecture could be put into 

place that will be reusable for multiple data extraction efforts.  This would support 
sending defined datasets to external customers.  For example, an external customer would 
setup for themselves the criteria of the datasets they require and the frequency that the 



 
 

JISArchitectureAssessment.doc             Page 141 of 145                                                   9/3/2004 
Confidential 

extractions are needed.  These datasets would be automatically extracted based on the 
criteria and would be pushed or be made available for retrieval per the defined schedule. 

• Current systems won't require modification. A new service layer could be added that 
allows the current systems to remain in place. 

• Reusable service framework could be developed. As new services are put into place, a 
sophisticated service framework could be developed which would minimize the cost of 
future integrations.  This interface would remain even as legacy systems are migrated to 
JIS NG and would shield external users from changes to internal applications. 

Required Parallel Efforts 
In order for any of the sort term goals to be successful two parallel efforts need to be undertaken, 
either at the same time as the short-term goal selected or as a precursor to the short-term goal. 
 
Create new platform – JIS NG 
Work should begin on an entirely new development platform.  This new platform and 
architecture would be the foundation for all new application development, including new 
features for existing systems, as well as, legacy application migrations. 
 
This would be a concentrated effort to create an optimal architecture designed to create a high-
speed development environment that is quick to learn and makes use of standardized 
architectural components.  The platform would assist AOC in achieving business goals with a 
minimal amount of time and using readily available resources, i.e., it will be designed to allow 
less experienced developers to be effective.  The major benefit to the business is reduction in 
ongoing costs for new and maintenance development and more predictable and shorter timelines 
for all future development efforts. 
 
Database architecture improvements 
Currently, the database used by CAPS, ACCORDS, JIS, and other applications suffers from poor 
performance problems and is extremely difficult to develop new applications upon. 
Improvements need to be made to the database architecture to drastically reduce the cost of new 
application development and improve performance. Options include:  
 

• Reduce table size. The current production database contains too much data in certain 
tables. An effort could be made to improve the performance and manageability of the 
database by archiving off older records or by partitioning existing large tables into 
multiple smaller tables. 

• Developing new schemas with real-time synchronization to the legacy database. The data 
model must be evolved from the legacy mainframe structures if any new application 
architecture is going to be successful. There are several approaches that could support 
this goal. Application developers need new databases that have meaningful naming 
conventions and more closely model the new application domain. Any new databases 
will likely require a real-time synchronization with the legacy systems. There are several 
ways this could be achieved. 

• Speed up development efforts.  The complex database schema is a drag on development 
efforts and some approach needs to be decided upon to address development speed.  
Options include Object/Relational mapping, using views to consolidate tables and 
database schema simplification. 



 
 

JISArchitectureAssessment.doc             Page 142 of 145                                                   9/3/2004 
Confidential 

APPENDIX H: REQUIRED DEVELOPMENT SUPPORT TEAMS 
 
Roles and Responsibilities 
 
One important aspect of speeding-up development is to focus the development team on business 
coding and limit their need to switch out of writing object code and into writing UI, architecture 
or database code. This type of context switching wastes development time and these separate 
areas are best handled by team members with the appropriate expertise. The following is a list of 
the teams and their responsibilities that are needed to keep the developers focused on realizing 
new business behavior and away from being sidetracked by tangential issues. 
 
1) UI Behavior Team 

• Work with users to design the UI. 
• Build all UIs for both Swing and Web. 
• Hand-off to dev team to add logic and to tie UI into the backend. 
• The UI implementations need to stay one iteration ahead of development so that 

development is never waiting for the UI to be built. 
• Will coordinate with development to ensure that suggested UI designs are feasible to 

implement. 
2) Development DBAs 

• Coordinate with Enterprise DBAs to support the needs of the Dev Team. 
• Handle mapping domain objects to the database schema. 
• Help write complex queries to off-load these tasks, and the knowledge required to write 

them, from the developers. 
• Optimize schema, queries and object mappings for performance. 
• Involved with development in design discussions to raise issues and to implement any 

changes to the mapping or database layers. 
• Organize data and databases for unit testing and development prototyping. 
• Work with Enterprise DBAs to push schema changes into test and productional 

environments. 
3) Testing Team 

• Write user-oriented tests that prove that the needed business functionality has been 
implemented. 

• Run functional tests to ensure that previously correct behavior remains intact, i.e., 
regression testing. 

• Also charged with other forms of testing such as load and performance testing. 
• Will create sets of test data that reflect business reality and assist in testing edge 

conditions in both unit and functional tests. 
• Should be able to write system and integration tests using Java and not just visual tests 

with a fancy tool. 
4) Business Analysis Team 

• Determine business needs. 
• Work to consolidate the business needs into requirements that the dev team can 

implement. 



 
 

JISArchitectureAssessment.doc             Page 143 of 145                                                   9/3/2004 
Confidential 

• Stay at least one iteration ahead of development so that development is never waiting for 
work. 

• Available for daily questions about requirements during implementation. 
• Approve development deliverables. 
• Work with the testing team to write test plans and review functional tests. 
• Work with the UI team to create UI designs and do preliminary usability testing. 

5) Architecture Team 
• This team may include team leads and head designers along with pure architects. 
• Mentor dev team members on proper use of the existing architecture, processes and tools. 
• Determine where the architecture can be enhanced to improve development speed. 
• Implement architectural enhancements and train development on any changes. 
• Review available technologies, processes and techniques and suggest options that should 

improve development quality and speed. 
• Review code to provide feedback on correct use of the architecture and to improve code 

quality. 
• Build, find or buy tools that assist development and testing of components built on the 

architecture. 
• Review upcoming UI and Business needs to determine the fit/gap with the current 

architecture and suggest alternatives that match the architecture and/or prepare to fill the 
gaps with new architecture or tools. 

• Participate in daily development team meeting, project planning and iteration 
retrospectives to assist and support the development team. 

• Be available to provide guidance to developers and assist in coding difficult or new types 
of development tasks. 

 



 
 

JISArchitectureAssessment.doc             Page 144 of 145                                                   9/3/2004 
Confidential 

APPENDIX I: SOLUTIONSIQ ENGAGEMENT CONTACTS 
 

Table 1: Project Contact Information 

 First Contact: 
Enterprise Solution 

Manager* 

Second Contact:  
Primary Technical Contact 

Third contact:  
Secondary Technical Contact 

Name Julia Francis Will Iverson Evan Campbell 
Title Enterprise Solutions 

Manager 
Practice Manager CTO/VP of Professional 

Services 
Phone 425.519.6718 425.451.2727 x2562 425.451.2727 
Email JFrancis@SolutionsIQ.com WIverson@SolutionsIQ.com ECampbell@SolutionsIQ.com 

 
 
 
 
 



 
 

JISArchitectureAssessment.doc             Page 145 of 145                                                   9/3/2004 
Confidential 

APPENDIX J: DOCUMENT HISTORY 
 

Table 2: Document History 

Date Version # Owner Section Modification 
     
     
     
     
     

 

 
 
 


